[1] |
吴飞洋, 俞陈诚, 林世超, 等. 生物基膨胀阻燃剂研究现状 [J]. 塑料助剂, 2020(5): 1-6, 48. doi: 10.3969/j.issn.1672-6294.2020.05.0001
WU F Y, YU C C, LIN S C, et al. Research status of bio-based intumescent flame retardants [J]. Plastics Additives, 2020(5): 1-6, 48(in Chinese). doi: 10.3969/j.issn.1672-6294.2020.05.0001
|
[2] |
石延超, 王国建. 有机磷阻燃剂的合成及在阻燃高分子材料中的应用研究进展 [J]. 高分子材料科学与工程, 2016, 32(5): 167-175. doi: 10.16865/j.cnki.1000-7555.2016.05.032
SHI Y C, WANG G J. Progress on synthesis of organophosphorus flame retardant and application in polymer materials [J]. Polymer Materials Science & Engineering, 2016, 32(5): 167-175(in Chinese). doi: 10.16865/j.cnki.1000-7555.2016.05.032
|
[3] |
CHEN L, WANG Y Z. A review on flame retardant technology in China. Part I: Development of flame retardants [J]. Polymers for Advanced Technologies, 2010, 21(1): 1-26.
|
[4] |
JIANG S D, BAI Z M, TANG G, et al. Fabrication of Ce-doped MnO2decorated graphene sheets for fire safety applications of epoxy composites: Flame retardancy, smoke suppression and mechanism [J]. J Mater Chem A, 2014, 2(41): 17341-17351. doi: 10.1039/C4TA02882A
|
[5] |
WANG X, SONG L, YANG H Y, et al. Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites [J]. Journal of Materials Chemistry, 2012, 22(41): 22037. doi: 10.1039/c2jm35479a
|
[6] |
YUAN X Y, WANG D Y, CHEN L, et al. Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone [J]. Polymer Degradation and Stability, 2011, 96(9): 1669-1675. doi: 10.1016/j.polymdegradstab.2011.06.012
|
[7] |
SHIBATA M, OHKITA T. Fully biobased epoxy resin systems composed of a vanillin-derived epoxy resin and renewable phenolic hardeners [J]. European Polymer Journal, 2017, 92: 165-173. doi: 10.1016/j.eurpolymj.2017.05.007
|
[8] |
国家市场监督管理总局, 国家标准化管理委员会. 生物基材料术语、定义和标识: GB/T 39514—2020[S]. 北京: 中国标准出版社, 2020.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Terminology, defination, identification of biobased materials: GB/T 39514—2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
|
[9] |
WANG D, WANG Y, LI T, et al. A bio-based flame-retardant starch based on phytic acid [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10265-10274.
|
[10] |
TANG G, ZHANG R, WANG X, et al. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite [J]. Journal of Macromolecular Science, Part A, 2013, 50(2): 255-269. doi: 10.1080/10601325.2013.742835
|
[11] |
BAUER K N, TEE H T, VELENCOSO M M, et al. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications [J]. Progress in Polymer Science, 2017, 73: 61-122. doi: 10.1016/j.progpolymsci.2017.05.004
|
[12] |
MA S Q, LIU X Q, JIANG Y H, et al. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid [J]. Science China Chemistry, 2014, 57(3): 379-388. doi: 10.1007/s11426-013-5025-3
|
[13] |
MA S Q, LI T T, LIU X Q, et al. Research progress on bio-based thermosetting resins [J]. Polymer International, 2016, 65(2): 164-173. doi: 10.1002/pi.5027
|
[14] |
ZHAO X M, XIAO D, ALONSO J P, et al. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability [J]. Materials & Design, 2017, 114: 623-632.
|
[15] |
WANG X, GUO W W, SONG L, et al. Intrinsically flame retardant bio-based epoxy thermosets: A review [J]. Composites Part B:Engineering, 2019, 179: 107487. doi: 10.1016/j.compositesb.2019.107487
|
[16] |
RAD E R, VAHABI H, de ANDA A R, et al. Bio-epoxy resins with inherent flame retardancy [J]. Progress in Organic Coatings, 2019, 135: 608-612. doi: 10.1016/j.porgcoat.2019.05.046
|
[17] |
ECOCHARD Y, DECOSTANZI M, NEGRELL C, et al. Cardanol and eugenol based flame retardant epoxy monomers for thermostable networks [J]. Molecules (Basel, Switzerland), 2019, 24(9): 1818. doi: 10.3390/molecules24091818
|
[18] |
MENG J J, ZENG Y S, ZHU G Q, et al. Sustainable bio-based furan epoxy resin with flame retardancy [J]. Polymer Chemistry, 2019, 10(19): 2370-2375. doi: 10.1039/C9PY00202B
|
[19] |
WANG S, MA S Q, XU C X, et al. Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties [J]. Macromolecules, 2017, 50(5): 1892-1901. doi: 10.1021/acs.macromol.7b00097
|
[20] |
ALONGI J, CARLETTO R A, di BLASIO A, et al. DNA: a novel, green, natural flame retardant and suppressant for cotton [J]. Journal of Materials Chemistry A, 2013, 1(15): 4779. doi: 10.1039/c3ta00107e
|
[21] |
CHO J H, VASAGAR V, SHANMUGANATHAN K, et al. Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams [J]. Chemistry of Materials, 2015, 27(19): 6784-6790. doi: 10.1021/acs.chemmater.5b03013
|
[22] |
BOSCO F, CARLETTO R A, ALONGI J, et al. Thermal stability and flame resistance of cotton fabrics treated with whey proteins [J]. Carbohydrate Polymers, 2013, 94(1): 372-377. doi: 10.1016/j.carbpol.2012.12.075
|
[23] |
COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants: When nature meets fire protection [J]. Materials Science and Engineering:R:Reports, 2017, 117: 1-25. doi: 10.1016/j.mser.2017.04.001
|
[24] |
张泽, 刘帅东, 崔永岩. 植酸在聚合物材料阻燃应用领域的研究进展 [J]. 中国塑料, 2021, 35(3): 139-150. doi: 10.19491/j.issn.1001-9278.2021.03.019
ZHANG Z, LIU S D, CUI Y Y. Research progress in application of phytic acid for flame retardancy of polymeric materials [J]. China Plastics, 2021, 35(3): 139-150(in Chinese). doi: 10.19491/j.issn.1001-9278.2021.03.019
|
[25] |
刘杰, 童天娇, 刘军海. 植酸的生物活性及应用 [J]. 四川化工, 2019, 22(6): 15-18. doi: 10.3969/j.issn.1672-4887.2019.06.006
LIU J, TONG T J, LIU J H. Biological activity and application of phytic acid [J]. Sichuan Chemical Industry, 2019, 22(6): 15-18(in Chinese). doi: 10.3969/j.issn.1672-4887.2019.06.006
|
[26] |
CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric [J]. Journal of Cleaner Production, 2016, 124: 114-119. doi: 10.1016/j.jclepro.2016.02.113
|
[27] |
何京秀, 陈雅君. 生物基阻燃剂阻燃聚乳酸的研究进展 [J]. 中国塑料, 2021, 35(2): 119-131. doi: 10.19491/j.issn.1001-9278.2021.02.019
HE J X, CHEN Y J. Research progress in flame-retardant PLA containing bio-based flame retardants [J]. China Plastics, 2021, 35(2): 119-131(in Chinese). doi: 10.19491/j.issn.1001-9278.2021.02.019
|
[28] |
ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy [J]. Polymer Degradation and Stability, 2019, 167: 179-188. doi: 10.1016/j.polymdegradstab.2019.07.005
|
[29] |
SHANG S, YUAN B H, SUN Y R, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology [J]. Journal of Colloid and Interface Science, 2019, 553: 364-371. doi: 10.1016/j.jcis.2019.06.015
|
[30] |
CHENG X W, TANG R C, YAO F, et al. Flame retardant coating of wool fabric with phytic acid/polyethyleneimine polyelectrolyte complex [J]. Progress in Organic Coatings, 2019, 132: 336-342. doi: 10.1016/j.porgcoat.2019.04.018
|
[31] |
ZHANG X, CAO J, YANG Y B, et al. Flame-retardant, highly sensitive strain sensors enabled by renewable phytic acid-doped biotemplate synthesis and spirally structure design [J]. Chemical Engineering Journal, 2019, 374: 730-737. doi: 10.1016/j.cej.2019.05.211
|
[32] |
ZHANG J, LI Z, ZHANG L, et al. Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 994-1003.
|
[33] |
IKEDA T, TAZUKE S Biologically active polycations: antimicrobial activities of poly[trialkyl(vinylbenzy1)ammonium chloride]-type polycations[J]. Makromol Chem Rapid Commun, 1983, 4: 459 -461.
|
[34] |
唐家林, 吴成业, 钟建业, 等. 甲壳素、壳聚糖生产工艺研究 [J]. 福建水产, 2010, 32(2): 38-42. doi: 10.3969/j.issn.1006-5601.2010.02.010
TANG J L, WU C Y, ZHONG J Y, et al. Study on the producing process of Chitin and Chitosan [J]. Journal of Fujian Fisheries, 2010, 32(2): 38-42(in Chinese). doi: 10.3969/j.issn.1006-5601.2010.02.010
|
[35] |
刘其海, 谢婉婷, 贾振宇, 等. 壳聚糖纳米纤维膜的制备与研究进展 [J]. 化工新型材料, 2021, 49(5): 214-216,221. doi: 10.19817/j.cnki.issn1006-3536.2021.05.048
LIU Q H, XIE W T, JIA Z Y, et al. Research progress of chitosan nanofiber membrane preparing by electrospinning [J]. New Chemical Materials, 2021, 49(5): 214-216,221(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.05.048
|
[36] |
汪玉庭, 刘玉红, 张淑琴. 甲壳素、壳聚糖的化学改性及其衍生物应用研究进展 [J]. 功能高分子学报, 2002, 15(1): 107-114. doi: 10.3969/j.issn.1008-9357.2002.01.023
WANG Y T, LIU Y H, ZHANG S Q. Advances in chemical modofication and application of chitin, chitosan and their derivatives [J]. Journal of Functional Polymers, 2002, 15(1): 107-114(in Chinese). doi: 10.3969/j.issn.1008-9357.2002.01.023
|
[37] |
CHEN Z Q, JIANG J C, YU Y, et al. Layer-by-layer assembled diatomite based on chitosan and ammonium polyphosphate to increase the fire safety of unsaturated polyester resins [J]. Powder Technology, 2020, 364: 36-48. doi: 10.1016/j.powtec.2020.01.037
|
[38] |
LIM K S, BEE S T, SIN L T, et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites [J]. Composites Part B:Engineering, 2016, 84: 155-174. doi: 10.1016/j.compositesb.2015.08.066
|
[39] |
CHEN C, GU X Y, JIN X D, et al. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites [J]. Carbohydrate Polymers, 2017, 157: 1586-1593. doi: 10.1016/j.carbpol.2016.11.035
|
[40] |
CHEN R, LUO Z J, YU X J, et al. Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin [J]. Carbohydrate Polymers, 2020, 245: 116530. doi: 10.1016/j.carbpol.2020.116530
|
[41] |
KUNDU C K, WANG X, SONG L, et al. Chitosan-based flame retardant coatings for polyamide 66 textiles: One-pot deposition versus layer-by-layer assembly [J]. International Journal of Biological Macromolecules, 2020, 143: 1-10. doi: 10.1016/j.ijbiomac.2019.11.220
|
[42] |
NAGESWARA RAO T, HUSSAIN I, HEUN KOO B. Enhanced thermal properties of silica nanoparticles and chitosan bio-based intumescent flame retardant Polyurethane coatings [J]. Materials Today:Proceedings, 2020, 27: 369-375. doi: 10.1016/j.matpr.2019.11.153
|
[43] |
KUNDU C K, WANG X, RAHMAN M Z, et al. Application of Chitosan and DOPO derivatives in fire protection of polyamide 66 textiles: Towards a combined gas phase and condensed phase activity [J]. Polymer Degradation and Stability, 2020, 176: 109158. doi: 10.1016/j.polymdegradstab.2020.109158
|
[44] |
MOHAPATRA S, NANDO G B. Cardanol: a green substitute for aromatic oil as a plasticizer in natural rubber [J]. RSC Adv, 2014, 4(30): 15406-15418. doi: 10.1039/C3RA46061D
|
[45] |
SAMANTARAI S, NAG A, SINGH N, et al. Cardanol functionalized carboxylated acrylonitrile butadiene rubber for better processability, technical properties and biocompatibility [J]. Journal of Polymers and the Environment, 2019, 27(9): 1878-1896. doi: 10.1007/s10924-019-01441-y
|
[46] |
HU Y, SHANG Q Q, BO C Y, et al. Synthesis and properties of UV-curable polyfunctional polyurethane acrylate resins from cardanol [J]. ACS Omega, 2019, 4(7): 12505-12511. doi: 10.1021/acsomega.9b01174
|
[47] |
WAZARKAR K, SABNIS A. Sustainable cardanol-based multifunctional carboxyl curing agents for epoxy coatings: Si–S synergism [J]. Journal of Coatings Technology and Research, 2020, 17(5): 1217-1230. doi: 10.1007/s11998-020-00341-4
|
[48] |
JORGE M R, DO AMARAL CRISPIM B, MEREY F M, et al. Sulphonates' mixtures and emulsions obtained from technical cashew nut shell liquid and cardanol for control of Aedes aegypti (Diptera: Culicidae) [J]. Environmental Science and Pollution Research International, 2020, 27(22): 27870-27884. doi: 10.1007/s11356-020-08998-5
|
[49] |
WANG X, KALALI E N, WANG D Y. Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3281-3290.
|
[50] |
章瑶, 戴志成, 陈洪龄. 腰果酚类表面活性剂及其他衍生物研究进展 [J]. 日用化学工业, 2021, 51(2): 139-147,152. doi: 10.3969/j.issn.1001-1803.2021.02.010
ZHANG Y, DAI Z C, CHEN H L. Research progress on cardanol-based surfactants and other derivatives [J]. China Surfactant Detergent & Cosmetics, 2021, 51(2): 139-147,152(in Chinese). doi: 10.3969/j.issn.1001-1803.2021.02.010
|
[51] |
JIA P Y, SONG F, LI Q G, et al. Recent development of cardanol based polymer materials-A review [J]. Journal of Renewable Materials, 2019, 7(7): 601-619. doi: 10.32604/jrm.2019.07011
|
[52] |
BO C, SHI Z, HU L, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam [J]. Scientific Reports, 2020, 10: 12082. doi: 10.1038/s41598-020-68910-6
|
[53] |
HUANG J L, GUO W W, WANG X, et al. Intrinsically flame retardant cardanol-based epoxy monomer for high-performance thermosets [J]. Polymer Degradation and Stability, 2021, 186: 109519. doi: 10.1016/j.polymdegradstab.2021.109519
|
[54] |
AMARNATH N, APPAVOO D, LOCHAB B. Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 389-402.
|
[55] |
GUO W W, WANG X, HUANG J L, et al. Phosphorylated cardanol-formaldehyde oligomers as flame-retardant and toughening agents for epoxy thermosets [J]. Chemical Engineering Journal, 2021, 423: 130192. doi: 10.1016/j.cej.2021.130192
|
[56] |
WANG X, NIU H X, GUO W W, et al. Cardanol as a versatile platform for fabrication of bio-based flame-retardant epoxy thermosets as DGEBA substitutes [J]. Chemical Engineering Journal, 2021, 421: 129738. doi: 10.1016/j.cej.2021.129738
|
[57] |
WANG X, ZHOU S, GUO W W, et al. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3409-3416.
|
[58] |
CHEN J, LIU Z S, JIANG J C, et al. A novel biobased plasticizer of epoxidized cardanol glycidyl ether: Synthesis and application in soft poly(vinyl chloride) films [J]. RSC Advances, 2015, 5(69): 56171-56180. doi: 10.1039/C5RA07096A
|
[59] |
CAO L C, YU I K M, LIU Y Y, et al. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects [J]. Bioresource Technology, 2018, 269: 465-475. doi: 10.1016/j.biortech.2018.08.065
|
[60] |
GONÇALVES A R, BENAR P. Hydroxymethylation and oxidation of organosolv lignins and utilization of the products [J]. Bioresource Technology, 2001, 79(2): 103-111. doi: 10.1016/S0960-8524(01)00056-6
|
[61] |
HU J, XIAO R, SHEN D K, et al. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy [J]. Bioresource Technology, 2013, 128: 633-639. doi: 10.1016/j.biortech.2012.10.148
|
[62] |
KUMAR A, KUMAR A, KUMAR J, et al. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry [J]. Bioresource Technology, 2019, 291: 121822. doi: 10.1016/j.biortech.2019.121822
|
[63] |
LI B, ZHANG X C, SU R Z. An investigation of thermal degradation and charring of larch lignin in the condensed phase: The effects of boric acid, guanyl urea phosphate, ammonium dihydrogen phosphate and ammonium polyphosphate [J]. Polymer Degradation and Stability, 2002, 75(1): 35-44. doi: 10.1016/S0141-3910(01)00202-6
|
[64] |
ZHU H B, PENG Z M, CHEN Y M, et al. Preparation and characterization of flame retardant polyurethane foams containing phosphorus–nitrogen-functionalized lignin [J]. RSC Adv, 2014, 4(98): 55271-55279. doi: 10.1039/C4RA08429B
|
[65] |
WU K, XU S, TIAN X Y, et al. Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression [J]. International Journal of Biological Macromolecules, 2021, 178: 580-590. doi: 10.1016/j.ijbiomac.2021.02.148
|
[66] |
LIANG D X, ZHU X J, DAI P, et al. Preparation of a novel lignin-based flame retardant for epoxy resin [J]. Materials Chemistry and Physics, 2021, 259: 124101. doi: 10.1016/j.matchemphys.2020.124101
|
[67] |
WANG Y L, ZHANG Y M, LIU B Y, et al. A novel phosphorus-containing lignin-based flame retardant and its application in polyurethane [J]. Composites Communications, 2020, 21: 100382. doi: 10.1016/j.coco.2020.100382
|
[68] |
DAI P, LIANG M K, MA X F, et al. Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin [J]. ACS Omega, 2020, 5(49): 32084-32093. doi: 10.1021/acsomega.0c05146
|
[69] |
YANG W M, WU S Y, YANG W, et al. Nanoparticles of polydopamine for improving mechanical and flame-retardant properties of an epoxy resin [J]. Composites Part B:Engineering, 2020, 186: 107828. doi: 10.1016/j.compositesb.2020.107828
|
[70] |
CHI Z Y, GUO Z W, XU Z C, et al. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism [J]. Polymer Degradation and Stability, 2020, 176: 109151. doi: 10.1016/j.polymdegradstab.2020.109151
|
[71] |
QI J, PAN Y T, LUO Z L, et al. Facile and scalable fabrication of bioderived flame retardant based on adenine for enhancing fire safety of fully biodegradable PLA/PBAT/TPS ternary blends [J]. Journal of Applied Polymer Science, 2021, 138(35): 50877. doi: 10.1002/app.50877
|
[72] |
SHEN M Y, KUAN C F, KUAN H C, et al. Study on preparation and properties of agricultural waste bagasse eco-type bio-flame-retardant/epoxy composites [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 525-538. doi: 10.1007/s10973-020-10368-9
|
[73] |
KIM Y O, CHO J, YEO H, et al. Flame retardant epoxy derived from tannic acid as biobased hardener [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3858-3865.
|
[74] |
XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene [J]. Carbohydrate Polymers, 2020, 234: 115891. doi: 10.1016/j.carbpol.2020.115891
|
[75] |
NIU H X, NABIPOUR H, WANG X, et al. Phosphorus-free vanillin-derived intrinsically flame-retardant epoxy thermoset with extremely low heat release rate and smoke emission [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(15): 5268-5277.
|
[76] |
NABIPOUR H, WANG X, SONG L, et al. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire [J]. Carbohydrate Polymers, 2020, 246: 116641. doi: 10.1016/j.carbpol.2020.116641
|
[77] |
LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics [J]. Carbohydrate Polymers, 2020, 237: 116173. doi: 10.1016/j.carbpol.2020.116173
|
[78] |
LIU X H, ZHANG Q Y, CHENG B W, et al. Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent [J]. Cellulose, 2018, 25(1): 799-811. doi: 10.1007/s10570-017-1550-0
|
[79] |
LIU X H, ZHANG Q Y, PENG B, et al. Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid [J]. Journal of Cleaner Production, 2020, 243: 118641. doi: 10.1016/j.jclepro.2019.118641
|
[80] |
HWAN J S, HYUK H J, WOONG L J, et al. Bioinspired adenosine triphosphate as an “all-in-one” green flame retardant via extremely intumescent char formation [J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22935-22945.
|