[1] LU H, ZHU Z, ZHANG H, et al. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide[J]. Chemical Engineering Journal, 2015, 276: 365-375. doi: 10.1016/j.cej.2015.04.095
[2] JOHNSTON S G, BENNETT W W, DORIEAN N, et al. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system[J]. Science of the Total Environment, 2020, 710: 136354. doi: 10.1016/j.scitotenv.2019.136354
[3] CHEN Y Y, YU S H, JIANG H F, et al. Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites[J]. Applied Surface Science, 2018, 444: 224-234. doi: 10.1016/j.apsusc.2018.03.081
[4] 湖南锡矿山周边水体的环境特征[J]. 环境科学学报, 2009, 29(3): 655-661.
[5] 李玲, 张国平, 刘虹, 等. 广西大厂多金属矿区河流中Sb和As的迁移及环境影响[J]. 环境科学研究, 2009, 22(6): 682-687. doi: 10.13198/j.res.2009.06.60.lil.010
[6] 孔德冠. 锑矿区水土环境中锑污染及修复[D]. 广州: 广州大学, 2021.
[7] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of environmental management, 2015, 151: 326-342.
[8] 单然然. 功能化磁性LDH对水中重金属及染料的去除作用研究[D]. 济南: 济南大学, 2016.
[9] 李杨, 黄阳, 王维清. 镁铝水滑石对水中Sb(V)的吸附性能研究[J]. 非金属矿, 2019, 42(3): 87-91. doi: 10.3969/j.issn.1000-8098.2019.03.024
[10] ARDAU C, FRAU F, LATTANZI P. Antimony removal from aqueous solutions by the use of Zn-Al sulphate layered double hydroxide[J]. Water, Air, Soil Pollution, 2016, 227(9): 1-15.
[11] 郭亚祺, 杨洋, 伍新花, 等. 煅烧的水滑石同时去除水体中砷和氟[J]. 环境工程学报, 2014, 8(6): 2485-2491.
[12] VIOLANTE A, PUCCI M, COZZOLINO V, et al. Sorption/desorption of arsenate on/from Mg–Al layered double hydroxides: Influence of phosphate[J]. Journal of Colloid Interface Science, 2009, 333(1): 63-70. doi: 10.1016/j.jcis.2009.01.004
[13] LAIPAN M, YU J, ZHU R, et al. Functionalized layered double hydroxides for innovative applications[J]. Materials Horizons, 2020, 7(3): 715-745. doi: 10.1039/C9MH01494B
[14] WANG S, ZHU J, LI T, et al. Oxygen vacancy-mediated CuCoFe/tartrate-LDH catalyst directly activates oxygen to produce superoxide radicals: Transformation of active species and implication for nitrobenzene degradation[J]. Environmental Science Technology, 2022, 56(12): 7924-7934. doi: 10.1021/acs.est.2c00522
[15] 张倩. 层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D]. 重庆: 重庆大学, 2018.
[16] YAN D, WANG Y, LIU J, et al. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy[J]. Journal of Alloys and Compounds, 2020, 824: 153918. doi: 10.1016/j.jallcom.2020.153918
[17] CHU Y, ZHU S, XIA M, et al. Methionine-montmorillonite composite: A novel material for efficient adsorption of lead ions[J]. 2020, 31(2): 708-717.
[18] AHMAD R, ANSARI K. Novel in-situ fabrication of L-methionine functionalized bionanocomposite for adsorption of Amido Black 10B dye[J]. Process Biochemistry, 2022, 119: 48-57. doi: 10.1016/j.procbio.2022.05.015
[19] 闫大帅. 镁合金表面氨基酸插层水滑石环氧涂层自修复性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[20] 袁琦. L型氨基酸插层水滑石的制备及其性能研究[D]. 北京: 北京化工大学, 2004.
[21] 黄柱坚. 层状双氢氧化物(LDHs)复合材料的构建及光催化性能研究[D]. 广州: 华南理工大学, 2014.
[22] SHEN L, JIANG X, CHEN Z, et al. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As (III) and As (V) adsorption[J]. Chemosphere, 2017, 176: 57-66. doi: 10.1016/j.chemosphere.2017.02.100
[23] LAZARIDIS N K, ASOUHIDOU D D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite[J]. Water Research, 2003, 37(12): 2875-2882. doi: 10.1016/S0043-1354(03)00119-2
[24] XI J, HE M, LIN C. Adsorption of antimony (V) on kaolinite as a function of pH, ionic strength and humic acid[J]. Environmental Earth Sciences, 2010, 60(4): 715-722. doi: 10.1007/s12665-009-0209-z
[25] CHUTIA P, KATO S, KOJIMA T, et al. Arsenic adsorption from aqueous solution on synthetic zeolites[J]. Journal of Hazardous Materials, 2009, 162(1): 440-447. doi: 10.1016/j.jhazmat.2008.05.061
[26] CAO Y, GUO Q, LIANG M, et al. Sb(III) and Sb(V) removal from water by a hydroxyl-intercalated, mechanochemically synthesized Mg-Fe-LDH[J]. Applied Clay Science, 2020, 196: 105766. doi: 10.1016/j.clay.2020.105766
[27] 聂晓, 阎莉, 张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学, 2018, 37(2): 318-326. doi: 10.7524/j.issn.0254-6108.2017061202
[28] OTTEN D E, SHAFFER P R, GEISSLER P L, et al. Elucidating the mechanism of selective ion adsorption to the liquid water surface[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 701-705. doi: 10.1073/pnas.1116169109
[29] YAN L, GONCA S, ZHU G, et al. Layered double hydroxide nanostructures and nanocomposites for biomedical applications[J]. Journal of Materials Chemistry B, 2019, 7(37): 5583-5601. doi: 10.1039/C9TB01312A
[30] BESSAIES H, IFTEKHAR S, DOSHI B, et al. Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water[J]. Journal of Environmental Sciences, 2020, 91: 246-261. doi: 10.1016/j.jes.2020.01.028
[31] LV L, SUN P, GU Z, et al. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1444-1449.
[32] OLFS H-W, TORRES-DORANTE L, ECKELT R, et al. Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties[J]. Applied clay science, 2009, 43(3/4): 459-464.
[33] BASHIR S, ZHU J, FU Q, et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science Pollution Research, 2018, 25(12): 11875-83. doi: 10.1007/s11356-018-1292-z
[34] CAO D, ZENG H, YANG B, et al. Mn assisted electrochemical generation of two-dimensional Fe-Mn layered double hydroxides for efficient Sb (V) removal[J]. Journal of Hazardous Materials, 2017, 336: 33-40. doi: 10.1016/j.jhazmat.2017.04.034
[35] GUO Y, ZHU Z, QIU Y, et al. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions[J]. Journal of Hazardous Materials, 2012, 239: 279-288.
[36] KANG D, YU X, TONG S, et al. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 2013, 228: 731-740. doi: 10.1016/j.cej.2013.05.041
[37] HUDCOVA B, VESELSKA V, FILIP J, et al. Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis[J]. Chemosphere, 2017, 168: 539-548. doi: 10.1016/j.chemosphere.2016.11.031
[38] LAN B, WANG Y, WANG X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. doi: 10.1016/j.cej.2016.02.019
[39] WEN T, WU X, TAN X, et al. One-pot synthesis of water-swellable Mg–Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As (V) from aqueous solutions[J]. ACS Applied Materials Interfaces, 2013, 5(8): 3304-3311. doi: 10.1021/am4003556
[40] BESSAIES H, IFTEKHAR S, ASIF M B, et al. Characterization and physicochemical aspects of novel cellulose-based layered double hydroxide nanocomposite for removal of antimony and fluoride from aqueous solution[J]. Journal of Environmental Sciences, 2021, 102: 301-315. doi: 10.1016/j.jes.2020.09.034
[41] WU X L, WANG L, CHEN C L, et al. Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal[J]. Journal of Materials Chemistry, 2011, 21(43): 17353-17359. doi: 10.1039/c1jm12678d