[1] SHIM S, REZA A, KIM S, et al. Nutrient recovery from swine wastewater at full-scale: An integrated technical, economic and environmental feasibility assessment[J]. Chemosphere, 2021, 277: 130309. doi: 10.1016/j.chemosphere.2021.130309
[2] 宋晓智. 一段式厌氧氨氧化技术处理养猪废水[J]. 净水技术, 2021, 40(S1): 95-98. doi: 10.15890/j.cnki.jsjs.2021.s1.021
[3] 郑效旭, 李慧莉, 徐圣君, 等. SBR串联生物强化稳定塘处理养猪废水工艺优化[J]. 环境工程学报, 2020, 14(6): 1503-1511. doi: 10.12030/j.cjee.201902016
[4] LIANG C, WEI D, ZHANG S, et al. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111885. doi: 10.1016/j.ecoenv.2020.111885
[5] LI X, WU S, YANG C, et al. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review[J]. Bioresource Technology, 2020, 318: 123858. doi: 10.1016/j.biortech.2020.123858
[6] VYMAZAL J. Constructed wetlands for wastewater treatment: Five decades of experience[J]. Environmental Science & Technology, 2010, 45: 61-69.
[7] ZHENG Y, WANG Z, CAO T, et al. Enhancement effects and pathways of nitrogen removal by plant-based carbon source in integrated vertical flow constructed wetlands[J]. Journal of Water Process Engineering, 2022, 47: 102734. doi: 10.1016/j.jwpe.2022.102734
[8] NEGI D, VERMA S, SINGH S, et al. Nitrogen removal via anammox process in constructed wetland: A comprehensive review[J]. Chemical Engineering Journal, 2022, 437: 135434. doi: 10.1016/j.cej.2022.135434
[9] WANG Z, HUANG M, QI R, et al. Enhanced nitrogen removal and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J]. Chemical Engineering Journal, 2017, 314: 291-300. doi: 10.1016/j.cej.2016.11.060
[10] RAMPURIA A, GUPTA A B, BRIGHU U. Nitrogen transformation processes and mass balance in deep constructed wetlands treating sewage, exploring the anammox contribution[J]. Bioresource Technology, 2020, 314: 123737. doi: 10.1016/j.biortech.2020.123737
[11] SUN Z, DZAKPASU M, ZHAO L, et al. Enhancement of partial denitrification-anammox pathways in constructed wetlands by plant-based external carbon sources[J]. Journal of Cleaner Production, 2022, 370: 133581. doi: 10.1016/j.jclepro.2022.133581
[12] 林兴, 方文烨, 金润, 等. 低基质CANON中短程硝化稳定性控制研究[J]. 环境科学研究, 2018, 31(8): 1423-1430. doi: 10.13198/j.issn.1001-6929.2018.05.21
[13] LIU H, HU Z, ZHANG J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review[J]. Bioresource Technology, 2016, 214: 797-805. doi: 10.1016/j.biortech.2016.05.003
[14] 赵子健, 程瑞, 何凯雯, 等. 拔风管对CANON型人工湿地脱氮性能的影响[J]. 中国环境科学, 2022, 42(3): 1191-1201. doi: 10.3969/j.issn.1000-6923.2022.03.024
[15] 冯欣. 跌水拔风充氧装置处理生活污水[J]. 水处理技术, 2018, 44(4): 92-94. doi: 10.16796/j.cnki.1000-3770.2018.04.019
[16] PARDE D, PATWA A, SHUKLA A, et al. A review of constructed wetland on type, treatment and technology of wastewater[J]. Environmental Technology & Innovation, 2021, 21: 101261.
[17] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002.
[18] WANG H, JI G, BAI X, et al. Assessing nitrogen transformation processes in a trickling filter under hydraulic loading rate constraints using nitrogen functional gene abundances[J]. Bioresource Technology, 2015, 177: 217-223. doi: 10.1016/j.biortech.2014.11.094
[19] ZHANG Y, JI G, WANG R. Quantitative responses of nitrous oxide accumulation to genetic associations across a temperature gradient within denitrification biofilters[J]. Ecological Engineering, 2017, 102: 145-151. doi: 10.1016/j.ecoleng.2017.02.008
[20] JI G, ZHI W, TAN Y. Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems[J]. Ecological Engineering, 2012, 44: 269-277. doi: 10.1016/j.ecoleng.2012.04.007
[21] ZHI W, YUAN L, JI G, et al. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands[J]. Environmental Science & Technology, 2015, 49: 4575-4583.
[22] 张馨文, 冯成业, 张文智, 等. 人工湿地碳调控研究进展[J]. 湿地科学, 2022, 20(3): 413-420. doi: 10.13248/j.cnki.wetlandsci.2022.03.015
[23] 王振, 刘超翔, 李鹏宇, 等. 废砖块作为人工湿地填料的除磷能力研究[J]. 环境科学, 2012, 33(12): 4373-4379. doi: 10.13227/j.hjkx.2012.12.046
[24] LI Y H, LI H B, YANG L, et al. Study on the contribution of different depth layers to N2O emission in subsurface wastewater infiltration system[J]. Ecological Engineering, 2019, 133: 69-75. doi: 10.1016/j.ecoleng.2019.04.030
[25] LI Y H, LI H B, XU X Y, et al. Correlations between the oxidation-reduction potential characteristics and microorganism activities in the subsurface waste water in filtration system[J]. Desalination and Water Treatment, 2016, 57: 5350-5357. doi: 10.1080/19443994.2014.1003606
[26] 韩文杰, 吴迪, 周家中, 等. CANON生物膜载体储存及活性恢复研究[J]. 中国环境科学, 2020, 40(5): 2062-2072. doi: 10.3969/j.issn.1000-6923.2020.05.024
[27] DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021. doi: 10.1007/s00253-015-7052-9
[28] ZHU X, CHEN Y. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid[J]. Environmental Science & Technology, 2011, 45(6): 2137-2143.
[29] 马瑞婕, 刘永红, 梁继东, 等. 短程反硝化(PDN)-Anammox生物脱氮工艺研究进展[J]. 应用化工, 2022, 51(6): 1775-1780. doi: 10.3969/j.issn.1671-3206.2022.06.047
[30] 杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展[J]. 中国科学:技术科学, 2022, 52(3): 389-402.
[31] PANG Y, ZHANG Y, YAN X, et al. Cold temperature effects on long-term nitrogen transformation pathway in a tidal flow constructed wetland[J]. Environmental Science & Technology, 2015, 49: 13550-13557.
[32] PANG Y, JI G. Biotic factors drive distinct DNRA potential rates and contributions in typical Chinese shallow lake sediments[J]. Environmental Pollution, 2019, 254: 1-10.