[1] CHIU Z C, CHEN M Y, LEE D J, et al. Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels[J]. Water Research, 2007, 41(4): 884-892. doi: 10.1016/j.watres.2006.11.035
[2] HAITAO, FAN, XIUHONG, et al. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations[J]. Chemosphere, 2017, 169: 589-595.
[3] EFREMOV S N, ZOLOTAREV P P. Theory of diffusion through, and sorption in, a biporous sorbent membrane with a constant difference in concentration at the membrane faces and linear sorption isotherm 3. Sorption in the transport pore system[J]. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982, 31(2): 215-220. doi: 10.1007/BF00948229
[4] FAN H, LU Q, LIU G, et al. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems[J]. Journal of Environmental Science:English version, 2017(55): 224-235.
[5] ZHOU X, WU Y, SHI H, et al. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant[J]. Journal of Environmental Science:English version, 2013, 25(2): 295-301.
[6] JING, PAN, FANG, et al. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater: ScienceDirect[J]. Bioresource Technology, 2016, 211: 774-778. doi: 10.1016/j.biortech.2016.03.133
[7] QIAN, FENG, XIRONG, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal, 2019, 378: 122-130.
[8] 范文雯, 袁林江. 气泡直径对气-液-污泥流态及污泥颗粒化的影响[J]. 中国环境科学. 2020, 40(9): 3859-3870.
[9] 范文雯, 袁林江, 马远征, 等. 鼓泡和鼓泡-搅拌SBR好氧污泥颗粒化能耗分析[J]. 中国环境科学, 2021, 41(7): 3229-3237. doi: 10.3969/j.issn.1000-6923.2021.07.026
[10] MENG F, YANG F, SHI B, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities[J]. Separation & Purification Technology, 2008, 59(1): 91-100.
[11] MARECKI, GRZEGORZ, P, et al. The growth of railway ground vibration problems: A review[J]. Science of the Total Environment, 2016, 568: 1276-1282. doi: 10.1016/j.scitotenv.2015.09.101
[12] ZHANG K, LYU L, YAO S, et al. Effects of vibration on anammox-enriched biofilm in a high-loaded upflow reactor[J]. Science of the Total Environment, 2019, 685(OCT.1): 1284-1293.
[13] SMOCZYŃSKI L, RATNAWEERA H, KOSOBUCKA M, et al. Image analysis of sludge aggregates[J]. Separation & Purification Technology, 2014, 122(4): 412-420.
[14] ZHANG K, YANG B, MA Y, et al. A novel anammox process combined with vibration technology[J]. Bioresource Technology, 2018, 256: 277-284. doi: 10.1016/j.biortech.2018.01.128
[15] 王祥秋, 张火军, 谢文玺. 高速铁路周边建筑物环境振动现场测试与分析[J]. 土木建筑与环境工程. 2018, 40(3): 16-22.
[16] ZHENG X, RUI W, CHEN Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832.
[17] ARNALDOS M, PAGILLA K R. Implementation of a demand-side approach to reduce aeration requirements of activated sludge systems: Directed acclimation of biomass and its effect at the process level[J]. Water Research, 2014, 62(oct.1): 147-155.
[18] BARBOT E, SEYSSIECQ I, ROCHE N, et al. Inhibition of activated sludge respiration by sodium azide addition: Effect on rheology and oxygen transfer[J]. Chemical Engineering Journal, 2010, 163(3): 230-235. doi: 10.1016/j.cej.2010.07.050
[19] CHIU Z C, CHEN M Y, LEE D J, et al. Diffusivity of oxygen in aerobic granules[J]. Biotechnology & Bioengineering, 2010, 94(3): 505-513.
[20] LI B, BISHOP P L. Micro-profiles of activated sludge floc determined using microelectrodes[J]. Water Research, 2004, 38(5): 1248-1258. doi: 10.1016/j.watres.2003.11.019
[21] SU B, QU Z, SONG Y, et al. Investigation of measurement methods and characterization of zeta potential for aerobic granular sludge[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1142-1147. doi: 10.1016/j.jece.2014.03.006
[22] WANG B, LIU X, CHEN J, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates[J]. Water Research(Oxford), 2018, 129: 133-142.
[23] MICHAJLUK BARBOZA B J, PIRIS JARA P A, MERELES CEUPENS L G, et al. Semillas de Salvia hispanica L., “chía” como fuente de macronutrientes, fibra alimentaria y minerales[J]. Investigación agraria (Online), 2018, 20(1): 74-77.
[24] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research (Oxford), 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
[25] 国家环境保护局. 中华人民共和国国家标准. 水质 分析方法标准[M]. 中华人民共和国国家标准. 水质分析方法标准, 2002.
[26] PARK S, CHUNG J, RITTMANN B E, et al. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor[J]. Biotechnology & Bioengineering, 2015, 112(1): 43-52.
[27] ZHANG K, LYU L, KANG T, et al. A rapid and effective way to cultivate anammox granular sludge through vibration[J]. International Biodeterioration & Biodegradation, 2019, 143: 104704.
[28] ELLENBERGER J, KRISHNA R. Improving mass transfer in gas–liquid dispersions by vibration excitement[J]. 2002, 57(22/23): 4809-4815.
[29] QIAN F, RAN G, YSA B, et al. Revealing hydrodynamic effects on flocculation performance and surface properties of sludge by comparing aeration and stirring systems via computational fluid dynamics aided calculation: ScienceDirect[J]. Water Research, 2020, 172: 115500. doi: 10.1016/j.watres.2020.115500
[30] OLUGHU W, GALBRAITH D, PAGET C, et al. Does the BioBLU 0.3f single-use scale to the BioFlo 320 reuseable bioreactor on a matched volumetric oxygen mass transfer coefficient?[J]. World Journal of Microbiology and Biotechnology, 2021, 37(1): 121-127.
[31] ROBERTA F, GIANNI A, et al. Investigation of sludge solubilization and phosphorous release in anaerobic side-stream reactor with a low pressure swirling jet hydrodynamic cavitation treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104389. doi: 10.1016/j.jece.2020.104389
[32] 黄红波. 螺旋桨空泡诱导的脉动压力预报及振动风险评估新方法[J]. 船舶力学, 2020, 24(11): 1375-1382. doi: 10.3969/j.issn.1007-7294.2020.11.001
[33] 陆芳, 陆林章, 庞业珍, 等. 螺旋桨空泡与脉动压力及振动特性研究[J]. 船舶力学, 2019, 23(11): 1294-1299. doi: 10.3969/j.issn.1007-7294.2019.11.003
[34] LIN T, MINGYAN L, ZONGDING H. Hydrodynamics and adsorption mass transfer in a novel gasliquidsolid circulating fluidized bed adsorber[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3598-3612.
[35] ZHANG Z, CAO R, JIN L, et al. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J]. Science of the Total Environment, 2019, 673(10): 83-91.
[36] BRITT M W, PETER B B, et al. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs[J]. Water Research, 1999, 33(2): 391-400. doi: 10.1016/S0043-1354(98)00208-5
[37] LI Z, LU P, ZHANG D, et al. Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics[J]. Separation & Purification Technology, 2016: 91-100.
[38] HARIF T, KHAI M, ADIN A. Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics[J]. Water Research, 2012, 46(10): 3177-3188. doi: 10.1016/j.watres.2012.03.034
[39] LI Z, LIN L, LIU X, et al. Understanding the role of extracellular polymeric substances in rheological properties of aerobic granular sludge[J]. Science of the Total Environment, 2020, 705(Feb.25): 135941-135948.
[40] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059
[41] BAKER A. Fluorescence excitation-emission matrix characterization of river waters impacted by tissue mill effluents[J]. Environmental Science & Technology, 2002, 36(7): 1377-1382.
[42] 王煜, 李秀钧, 张敏, 等. 二甲双胍对慢性暴露于高糖及高游离脂肪酸的HIT-T15细胞胰岛素受体酪氨酸蛋白激酶活性的影响[J]. 四川大学学报(医学版). 2007(5): 819-821.
[43] SHENG G P, YU H Q, LI X Y. Stability of sludge flocs under shear conditions: Roles of extracellular polymeric substances (EPS)[J]. Biotechnology and Bioengineering, 2006, 93(6): 1095-1102. doi: 10.1002/bit.20819