-
污水处理行业一直以来是一个高能耗行业,物质的传递效率较低是造成污水处理能耗居高不下的重要因素之一[1]。由于氧气和其他污染物质的传质效率较低,使得传统污水处理工艺不得不采用过量曝气,而这一过程的能耗占污水处理厂所用电力的50%~80%[2]。因此,能否利用自然界普遍存在的某种能量来打破物质传递阻力,提高物质在气-液-固三相间的传质效率,对提升污水处理效能也许是一种新的思路。
在活性污泥系统中,氧的传质的过程主要包含氧分子(O2)在液相中的传递,再由液相扩散至固相2个路径[1]。在液相中,传递效率主要依赖于液相的流态特征,如紊流程度和液体的黏滞性等;而在液相与污泥絮体间的传递效率的提升则取决于能否打破固液之间形成的双膜[3]。一些学者通过优化曝气策略,达到降低曝气量的目的。例如FAN等发现当采用低曝气量时(DO低至0.3 mg·L−1) ,活性污泥系统仍能达到正常曝气时的出水水质[4],然而这将导致气-液间超过50%的传质系数损失和丝状菌型污泥膨胀,不利于反应系统的稳定运行[5]。此外,也有研究通过改变曝气方式来提高氧的利用效率[6]。然而,这些方式因为并未改变氧气在气-固-液间的传质效率,同时也增加了运营管理成本而未得到广泛应用。部分学者开展了改变流态特征来提升传质系数的相关研究,取得了一些成果,如YAN等则通过增加水中机械剪切力来改变氧的传质效率[7]。尽管加载高能耗的机械搅拌能提高气液间传质效率,但所产生的剪切力极易破碎絮体,导致污泥功能性失活[8-9]。因此,需要一种既能提高氧在三相间的传质效率,又能避免破坏活性污泥理化特性的低能耗技术。
振动是一种普遍存在于自然环境中的能量传递方式。有研究表明,在不同的介质表面会产生微观状态下的剪切面,可以延长空气在水中的行程,为氧的传递提供良好的传质动力学环境[10-12]。振动在水体中会形成为微涡流,有利于活性污泥絮体内外间的物质交换[12]。此外,低频率机械振动(low frequency mechanical vibrations,LFMVs)能够抑制丝状菌的膨胀,有利于生物反应器内污泥保持良好的沉降性[13]。故而,从理论上分析,振源与水体的耦合作用对提高活性污泥系统的去除效能具有良好的效果[14]。然而,目前关于振动对污水中氧及污染物质传递效率的作用机制尚不明确。因此,本研究提出在低DO条件下,LFMVs在活性污泥系统中形成紊流流态继而强化物质更好的进入活性污泥絮体这一理念,探究了LFMVs对物质在多相流系统中输移的作用机制,揭示了在此条件下氧由气相至液相,再由液相进入絮体内部的传质机理,获得了絮体物理结构特性对振动条件的响应关系。本研究成果将为废水处理的节能降耗提供新的思路,有助于我国“双碳”战略的实施。
基于低频振动强化物质传递过程的污水处理效能提升机制
The mechanism of strengthening sewage treatment efficiency based on the enhancement of substrate transfer efficiency: Low frequency mechanical vibrations application
-
摘要: 考察了在低溶解氧(DO)条件下,低频机械振动(LFMVs)的加入对AO工艺脱氮效果的影响,从氧在气—液—固三相之间的传质效率、污泥絮体结构变化以及理化特性等方面进行了机理探究。结果表明:在(1.5±0.3) mg·L−1的低DO浓度下,随着振动频率的增加,系统 COD和TN的去除率有所提高,在40 Hz时达到最高,平均去除率分别为94.86%和76.88%,相比于对照组R0分别提升了5.42%和23.46%,此时,气-液间氧传递系数增加约140.46%,液-固间氧扩散系数增加了255.26%;理化特性分析结果表明,气-液间氧传递系数的增加是由于LFMVs强化了液相的湍流流态造成的,而液-固间氧扩散系数的提升主要是因为LFMVs的引入降低了污泥粒径,增大了絮体间孔隙和刺激了胞外聚合物(EPS)的分泌。此外,经济性评估结果表明,荷载 LFMVs的AO反应器比传统模式AO反应器的综合用电量低0.12 kW·(m3·h)−1。Abstract: In this study, the effect of low frequency mechanical vibrations (LFMVs) on the denitrification of AO process under the condition of low dissolved oxygen (DO) was investigated. Furthermore, the mechanism was explored from the aspects of oxygen mass transfer efficiency between “gas-liquid-solid” phases, sludge floc structure and physicochemical properties. The results showed that the removal rates of COD and TN in the system increased with the increase of the vibration frequency under the low DO concentration of (1.5±0.3) mg·L−1, they reached the highest values at the LFMVs of 40 Hz, and the corresponding average removal rates were 94.86% and 76.88%, respectively. Compared with the control group R0, the average removal rates increased by 5.42% and 23.46%, respectively. Meanwhile, the oxygen transfer coefficient between gas-liquid phases increased by approximately 140.46%, and the diffusion coefficient between liquid-solid phases increased by approximately 255.26%. The analyses of physical-chemical properties implied that the increment of oxygen transfer coefficient was attributed to LFMVs, which strengthened the turbulent flow pattern of liquid phase; while the increased diffusion coefficient was mainly caused by the introduction of LFMVs which reduced the sludge particle size, increased the pores between flocs, and stimulated the secretion of extracellular polymeric substance (EPS). In addition, the preliminary economic efficiency evaluation indicated that the comprehensive power consumption of AO reactor loaded with LFMVs was 0.12 kw·(m3 h)−1 lower than that of traditional AO reactor.
-
表 1 不同频率的LFMVs条件下气液和固液间传质效率拟合方程的斜率值
Table 1. Slope value of fitting equation of gas-liquid and solid-liquid mass transfer efficiency under different LFMVs conditions
路径 R0 R1 R2 R3 R4 R5 气液 (26.83±0.06)×10-2 (31.84±0.24)×10-2 (48.41±0.24)×10-2 (65.52±0.66)×10-2 (32.87±0.09)×10-2 (53.27±0.39)×10-2 固液 (17.01±1.53)×10-2 (46.69±4.43)×10-2 (47.20±2.25)×10-2 (59.32±1.79)×10-2 (38.12±4.82)×10-2 (35.72±2.06)×10-2 表 2 曝气设备的电功率计算
Table 2. Electric power calculation of aeration equipment
实验组 实际曝气量/
(m3·h−1)风压/
MPa风机
效率/%所需鼓风曝
气机功率/W起振器实际
功率/W总能耗/
(W·h−1)处理污水量/
(m3·h−1)设备总能耗费用/
(元·m−3)R3 0.16±0.1 0.10 73 5.30 0.60×6 8.93 6.6×10-3 0.81 R5 0.28±0.1 0.10 73 9.70 — 9.70 6.6×10-3 0.88 -
[1] CHIU Z C, CHEN M Y, LEE D J, et al. Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels[J]. Water Research, 2007, 41(4): 884-892. doi: 10.1016/j.watres.2006.11.035 [2] HAITAO, FAN, XIUHONG, et al. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations[J]. Chemosphere, 2017, 169: 589-595. [3] EFREMOV S N, ZOLOTAREV P P. Theory of diffusion through, and sorption in, a biporous sorbent membrane with a constant difference in concentration at the membrane faces and linear sorption isotherm 3. Sorption in the transport pore system[J]. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982, 31(2): 215-220. doi: 10.1007/BF00948229 [4] FAN H, LU Q, LIU G, et al. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems[J]. Journal of Environmental Science:English version, 2017(55): 224-235. [5] ZHOU X, WU Y, SHI H, et al. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant[J]. Journal of Environmental Science:English version, 2013, 25(2): 295-301. [6] JING, PAN, FANG, et al. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater: ScienceDirect[J]. Bioresource Technology, 2016, 211: 774-778. doi: 10.1016/j.biortech.2016.03.133 [7] QIAN, FENG, XIRONG, et al. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge[J]. Chemical Engineering Journal, 2019, 378: 122-130. [8] 范文雯, 袁林江. 气泡直径对气-液-污泥流态及污泥颗粒化的影响[J]. 中国环境科学. 2020, 40(9): 3859-3870. [9] 范文雯, 袁林江, 马远征, 等. 鼓泡和鼓泡-搅拌SBR好氧污泥颗粒化能耗分析[J]. 中国环境科学, 2021, 41(7): 3229-3237. doi: 10.3969/j.issn.1000-6923.2021.07.026 [10] MENG F, YANG F, SHI B, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities[J]. Separation & Purification Technology, 2008, 59(1): 91-100. [11] MARECKI, GRZEGORZ, P, et al. The growth of railway ground vibration problems: A review[J]. Science of the Total Environment, 2016, 568: 1276-1282. doi: 10.1016/j.scitotenv.2015.09.101 [12] ZHANG K, LYU L, YAO S, et al. Effects of vibration on anammox-enriched biofilm in a high-loaded upflow reactor[J]. Science of the Total Environment, 2019, 685(OCT.1): 1284-1293. [13] SMOCZYŃSKI L, RATNAWEERA H, KOSOBUCKA M, et al. Image analysis of sludge aggregates[J]. Separation & Purification Technology, 2014, 122(4): 412-420. [14] ZHANG K, YANG B, MA Y, et al. A novel anammox process combined with vibration technology[J]. Bioresource Technology, 2018, 256: 277-284. doi: 10.1016/j.biortech.2018.01.128 [15] 王祥秋, 张火军, 谢文玺. 高速铁路周边建筑物环境振动现场测试与分析[J]. 土木建筑与环境工程. 2018, 40(3): 16-22. [16] ZHENG X, RUI W, CHEN Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7): 2826-2832. [17] ARNALDOS M, PAGILLA K R. Implementation of a demand-side approach to reduce aeration requirements of activated sludge systems: Directed acclimation of biomass and its effect at the process level[J]. Water Research, 2014, 62(oct.1): 147-155. [18] BARBOT E, SEYSSIECQ I, ROCHE N, et al. Inhibition of activated sludge respiration by sodium azide addition: Effect on rheology and oxygen transfer[J]. Chemical Engineering Journal, 2010, 163(3): 230-235. doi: 10.1016/j.cej.2010.07.050 [19] CHIU Z C, CHEN M Y, LEE D J, et al. Diffusivity of oxygen in aerobic granules[J]. Biotechnology & Bioengineering, 2010, 94(3): 505-513. [20] LI B, BISHOP P L. Micro-profiles of activated sludge floc determined using microelectrodes[J]. Water Research, 2004, 38(5): 1248-1258. doi: 10.1016/j.watres.2003.11.019 [21] SU B, QU Z, SONG Y, et al. Investigation of measurement methods and characterization of zeta potential for aerobic granular sludge[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1142-1147. doi: 10.1016/j.jece.2014.03.006 [22] WANG B, LIU X, CHEN J, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates[J]. Water Research(Oxford), 2018, 129: 133-142. [23] MICHAJLUK BARBOZA B J, PIRIS JARA P A, MERELES CEUPENS L G, et al. Semillas de Salvia hispanica L., “chía” como fuente de macronutrientes, fibra alimentaria y minerales[J]. Investigación agraria (Online), 2018, 20(1): 74-77. [24] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research (Oxford), 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [25] 国家环境保护局. 中华人民共和国国家标准. 水质 分析方法标准[M]. 中华人民共和国国家标准. 水质分析方法标准, 2002. [26] PARK S, CHUNG J, RITTMANN B E, et al. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor[J]. Biotechnology & Bioengineering, 2015, 112(1): 43-52. [27] ZHANG K, LYU L, KANG T, et al. A rapid and effective way to cultivate anammox granular sludge through vibration[J]. International Biodeterioration & Biodegradation, 2019, 143: 104704. [28] ELLENBERGER J, KRISHNA R. Improving mass transfer in gas–liquid dispersions by vibration excitement[J]. 2002, 57(22/23): 4809-4815. [29] QIAN F, RAN G, YSA B, et al. Revealing hydrodynamic effects on flocculation performance and surface properties of sludge by comparing aeration and stirring systems via computational fluid dynamics aided calculation: ScienceDirect[J]. Water Research, 2020, 172: 115500. doi: 10.1016/j.watres.2020.115500 [30] OLUGHU W, GALBRAITH D, PAGET C, et al. Does the BioBLU 0.3f single-use scale to the BioFlo 320 reuseable bioreactor on a matched volumetric oxygen mass transfer coefficient?[J]. World Journal of Microbiology and Biotechnology, 2021, 37(1): 121-127. [31] ROBERTA F, GIANNI A, et al. Investigation of sludge solubilization and phosphorous release in anaerobic side-stream reactor with a low pressure swirling jet hydrodynamic cavitation treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104389. doi: 10.1016/j.jece.2020.104389 [32] 黄红波. 螺旋桨空泡诱导的脉动压力预报及振动风险评估新方法[J]. 船舶力学, 2020, 24(11): 1375-1382. doi: 10.3969/j.issn.1007-7294.2020.11.001 [33] 陆芳, 陆林章, 庞业珍, 等. 螺旋桨空泡与脉动压力及振动特性研究[J]. 船舶力学, 2019, 23(11): 1294-1299. doi: 10.3969/j.issn.1007-7294.2019.11.003 [34] LIN T, MINGYAN L, ZONGDING H. Hydrodynamics and adsorption mass transfer in a novel gasliquidsolid circulating fluidized bed adsorber[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3598-3612. [35] ZHANG Z, CAO R, JIN L, et al. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J]. Science of the Total Environment, 2019, 673(10): 83-91. [36] BRITT M W, PETER B B, et al. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs[J]. Water Research, 1999, 33(2): 391-400. doi: 10.1016/S0043-1354(98)00208-5 [37] LI Z, LU P, ZHANG D, et al. Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics[J]. Separation & Purification Technology, 2016: 91-100. [38] HARIF T, KHAI M, ADIN A. Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics[J]. Water Research, 2012, 46(10): 3177-3188. doi: 10.1016/j.watres.2012.03.034 [39] LI Z, LIN L, LIU X, et al. Understanding the role of extracellular polymeric substances in rheological properties of aerobic granular sludge[J]. Science of the Total Environment, 2020, 705(Feb.25): 135941-135948. [40] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459. doi: 10.1016/j.biortech.2012.08.059 [41] BAKER A. Fluorescence excitation-emission matrix characterization of river waters impacted by tissue mill effluents[J]. Environmental Science & Technology, 2002, 36(7): 1377-1382. [42] 王煜, 李秀钧, 张敏, 等. 二甲双胍对慢性暴露于高糖及高游离脂肪酸的HIT-T15细胞胰岛素受体酪氨酸蛋白激酶活性的影响[J]. 四川大学学报(医学版). 2007(5): 819-821. [43] SHENG G P, YU H Q, LI X Y. Stability of sludge flocs under shear conditions: Roles of extracellular polymeric substances (EPS)[J]. Biotechnology and Bioengineering, 2006, 93(6): 1095-1102. doi: 10.1002/bit.20819