[1] |
LESHER G Y, FROELICH E J, GRUETT M D, et al. 1,8-naphthyridine derivatives. A new class of Chemotherapeapeutic agents[J]. Medicinal Chemistry, 1962, 91(91): 1063-1065.
|
[2] |
VAN DOORSLAER X, DEWULF J, VAN LANGENHOVE H, et al. Fluoroquinolone antibiotics: An emerging class of environment micropollutants[J]. Science of the total environment, 2014, 500-501: 250-269. doi: 10.1016/j.scitotenv.2014.08.075
|
[3] |
TUFA R A, PINACHO D G, PASCUAL N, et al. Development and validation of an enzyme linked immunosorbent assay for fluoroquinolones in animal feed[J]. Food Control, 2015, 57: 195-201. doi: 10.1016/j.foodcont.2015.04.015
|
[4] |
GAO H, ZHANG L X, LU Z H, et al. Complex migration of antibiotic resistance in natural aquatic environments[J]. Environment Pollution, 2018, 232: 1-9. doi: 10.1016/j.envpol.2017.08.078
|
[5] |
AUST M O, GODLINSKI F, TRAVIS G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution, 2008, 156(3): 1243-1251. doi: 10.1016/j.envpol.2008.03.011
|
[6] |
LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
|
[7] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49: 6772-6782.
|
[8] |
XU W H, ZHANG G, ZOU S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometr[J]. Environmental Pollution, 2007, 145(3): 672-679. doi: 10.1016/j.envpol.2006.05.038
|
[9] |
刘珂. 胶州湾典型海岸带沉积物中喹诺酮抗生素时空分布特征及风险评价[D]. 青岛: 青岛大学, 2018.
|
[10] |
王同飞, 张伟军, 李立青, 等. 白洋淀清淤示范区沉积物中抗生素和多环芳烃的分布特征与风险评估[J]. 环境科学, 2021, 42(11): 5303-5311. doi: 10.13227/j.hjkx.202103061
|
[11] |
刘四光, 张乐蒙, 李赫男, 等. 闽江河口区沉积物中的抗生素分布特征及生态风险评价[J]. 应用海洋学学报, 2020, 39(2): 162-171. doi: 10.3969/J.ISSN.2095-4972.2020.02.002
|
[12] |
GONZALEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment[J]. Water Research, 2013, 47(6): 2050-2064. doi: 10.1016/j.watres.2013.01.020
|
[13] |
PADHYE L P, YAO H, KUNG'U F T, et al. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant[J]. Water Research, 2014, 51: 266-276. doi: 10.1016/j.watres.2013.10.070
|
[14] |
张运尚, 杜加茹, 王伟东, 等. 氟喹诺酮类药物残留限量及检测技术研究进展[J]. 中国畜牧杂志, 2021, 57(4): 39-44. doi: 10.19556/j.0258-7033.20200516-05
|
[15] |
柴丽月, 柳海, 梁芹芹, 等. 宁波市水产品中氟喹诺酮类药物残留现状分析及对策[J]. 检验检疫刊, 2020, 30(1): 25-27.
|
[16] |
农业农村部渔业渔政管理局. 2021年全国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021.
|
[17] |
AXLER R, TIKKANEN C, MCDANOLD M, et al. Water quality issues as sociated with aquaculture: A case study in mine pit lakes[J]. Water Environment Research, 1996, 68: 995-1011. doi: 10.2175/106143096X128027
|
[18] |
MATSUI Y, OZU T, INOUE T, et al. Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms[J]. Desalination, 2008, 226(1/2/3): 215-221.
|
[19] |
CAMPAGNOLOA E R, JOHNSON K R, KARPATIA A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Science of the Total Environment, 2002, 299(1/2/3): 89-95.
|
[20] |
HERRERA-HERRERA A V, HERNNDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with ultra-high performance liquid chromatographyfor the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples[J]. Pharmaceutical and Biomedical Analysis, 2013, 75: 130-137. doi: 10.1016/j.jpba.2012.11.026
|
[21] |
HERRERA-HERRERA A V, HERN NDEZ-BORGES J, BORGES-MIQUEL T M, et al. Dispersive liquid-liquid microextraction combined with nonaqueous capillary electrophoresis for the determination of fluoroquinolone antibiotics in waters[J]. Electrophoresis, 2010, 31(20): 3457-3465.
|
[22] |
RODRIGUEZ E, NAVARRO-VILLOSLADA F, BENITO-PENA E, et al. Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography[J]. Analytical Chemistry, 2011, 83(6): 2046-2055. doi: 10.1021/ac102839n
|
[23] |
GROS M, RODRGUEZ-MOZAZ, BARCEL D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1248: 104-121. doi: 10.1016/j.chroma.2012.05.084
|
[24] |
ZHOU J L, MASKAOUI K, LUFADEJU A. Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography-mass spectrometry/mass spectrometry[J]. Analytica Chimica Acta, 2012, 731: 32-39. doi: 10.1016/j.aca.2012.04.021
|
[25] |
DORIVAL-GARC N, ZAFRA-G MEZ A, CANTARERO S, et al. Simultaneous determination of 13 quinolone antibiotic derivatives in wastewater samples using solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry[J]. Microchemical Journal, 2013, 106: 323-333. doi: 10.1016/j.microc.2012.09.002
|
[26] |
PRIETO A, SCHRADER S, BAUERC, et al. Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water[J]. Analytica Chimica Acta, 2011, 685(2): 146-152. doi: 10.1016/j.aca.2010.11.038
|
[27] |
HUANG X J, QIU N N, YUAN D X, et al. Preparation of a mixed stir bar for sorptive extraction based on monolithic material for the extraction of quinolones from wastewater[J]. Journal of Chromatography A, 2010, 1217(16): 2667-2673. doi: 10.1016/j.chroma.2009.09.072
|
[28] |
RUSU A, HANCU G, V LGYI G, et al. Separation and determination of quinolone antibacterials by capillary electrophoresis[J]. Journal of Chromatographic Science, 2014, 52(8): 919-925. doi: 10.1093/chromsci/bmt107
|
[29] |
郝燕娟, 李汉敏, 叶卓霖, 等. 饲料中喹诺酮酸酯药物的测定液相色谱-串联质谱法[J]. 广东饲料, 2018, 27(11): 41-45. doi: 10.3969/j.issn.1005-8613.2018.11.011
|
[30] |
周鑫, 张建雄, 李继丰, 等. 超高效液相色谱串联质谱法测定饲料中7种氟喹诺酮类药物[J]. 养殖与饲料, 2018(1): 4-6. doi: 10.3969/j.issn.1671-427X.2018.01.002
|
[31] |
李妍, 闫蕊, 王孝研, 等. 动物源性食品中氟喹诺酮类抗生素残留检测方法的研究进展[J]. 食品安全质量检测学报, 2019, 10(10): 2918-2928. doi: 10.3969/j.issn.2095-0381.2019.10.015
|
[32] |
张宏博, 王洋, 王燕, 等. 肉制品中喹诺酮残留检测[J]. 食品安全导刊, 2018(31): 54-59. doi: 10.3969/j.issn.1674-0270.2018.31.019
|
[33] |
魏丹, 国明, 张菊. 加速溶剂萃取-磁固相萃取-高效液相色谱-串联质谱法测定水产品中10种氟喹诺酮类药物残留[J]. 色谱, 2020, 38(12): 1413-1422.
|
[34] |
钱卓真, 朱世超, 魏博娟, 等. 高效液相色谱-串联质谱法测定水产品中19种喹诺酮类药物残留量[J]. 中国渔业质量与标准, 2012(3): 68-76.
|
[35] |
李娟, 肖国生, 陈一资, 等. 可食用动物组织中喹诺酮类药物的多残留分析: 前处理方法[J]. 卫生研究, 2007, 36(5): 646-651. doi: 10.3969/j.issn.1000-8020.2007.05.043
|
[36] |
乔庆东, 吴云钊, 庄景新, 等. 固相萃取-高效液相色谱-串联质谱法测定畜禽肉中3种抗生素残留量[J]. 中国卫生检验杂志, 2022, 32(5): 536-539.
|
[37] |
丁紫荣, 黎玉清, 王雄, 等. 固相萃取-液相色谱-三重四极杆串联质谱测定养殖废水中 17 种氟喹诺酮类抗生素[J]. 环境工程学报, 2022, 16(2): 674-683. doi: 10.12030/j.cjee.202109077
|
[38] |
姜明宏, 王金鹏, 赵阳国. 固相萃取-高效液相色谱-串联质谱法同时测定海水中12种抗生素[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 107-114. doi: 10.16441/j.cnki.hdxb.20200281
|
[39] |
薛鸣, 杨凡绪, 金铨, 等. 固相萃取-超高效液相色谱-串联质谱法测定水样中17种磺胺类抗生素[J]. 中国卫生检验杂志, 2020, 30(13): 1537-1541.
|
[40] |
中华人民共和国生态环境部. 近岸海域环境监测技术规范 第四部分 近岸海域沉积物监测: HJ 442.3-2020[S]. 北京: 中国环境科学出版社, 2020.
|