[1] |
范婷婷, 夏菲洋, 孔令雅, 等. 场地地下水中氯代甲烷烃自然衰减机制[J]. 环境工程学报, 2021, 15(12): 3934-3945. doi: 10.12030/j.cjee.202108083
|
[2] |
CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343: 619-628. doi: 10.1016/j.cej.2018.03.011
|
[3] |
张凤君, 刘哲华, 苏小四, 等. 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1212-1220. doi: 10.13278/j.cnki.jjuese.20170240
|
[4] |
JEONG W G, KIM J G, BAEK K. Removal of 1, 2-dichloroethane in groundwater using Fenton oxidation[J]. Journal of Hazardous Materials, 2022, 428: 128253. doi: 10.1016/j.jhazmat.2022.128253
|
[5] |
孙军亮, 宫志强, 李璐, 等. 某氯代烃污染场地地下水抽出方案优化[J]. 环境工程, 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
|
[6] |
SANTOSH P G, SAROHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents: Application of mesoporous materials: A review[J]. Journal of Environmental Management, 2018, 211: 83-102.
|
[7] |
王泓泉. 污染地下水可渗透反应墙(PRB)技术研究进展[J]. 环境工程技术学报, 2020, 10(2): 251-259. doi: 10.12153/j.issn.1674-991X.20190129
|
[8] |
孟宪荣, 葛松, 许伟, 等. 原位电阻热脱附修复氯代烃污染土壤[J]. 环境工程学报, 2021, 15(2): 669-676. doi: 10.12030/j.cjee.202009077
|
[9] |
ANNE W, AKI S R, RICHARD T A. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 68-82. doi: 10.1016/j.jconhyd.2013.05.001
|
[10] |
崔海炜, 孙继朝, 张英, 等. 可渗透反应墙原位修复垃圾渗滤液污染地下水[J]. 环境工程学报, 2012, 6(8): 2698-2704.
|
[11] |
张永祥, 王晋昊, 井琦, 等. 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496. doi: 10.16085/j.issn.1000-6613.2020-1852
|
[12] |
COSTA J A S, JESUS R A, SANTOS D O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259. doi: 10.1016/j.jece.2021.105259
|
[13] |
李美元, 白金, 杨丽娜, 等. 金属改性硅基介孔材料及其加氢脱硫研究进展[J]. 化学通报, 2017, 80(5): 448-453. doi: 10.14159/j.cnki.0441-3776.2017.05.006
|
[14] |
ENSHIRAH D N. Adsorption of heavy metals on functionalized-mesoporous silica: A review[J]. Microporous and Mesoporous Materials, 2017, 247: 145-157. doi: 10.1016/j.micromeso.2017.03.050
|
[15] |
ALARDHI S M, ALBAYATI T M, ALRUBAYE J M. Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column[J]. Heliyon, 2020, 6(1): e03253. doi: 10.1016/j.heliyon.2020.e03253
|
[16] |
旦辉. 硅基介孔材料的控制合成及其核素吸附性能研究[D]. 绵阳: 西南科技大学, 2020.
|
[17] |
GETKESH E M, YOUNESI H, SHAHBAZI A. Nitrate removal from aqueous solution using nanoporous MCM-41 silica adsorbent functionalized with diamine group[J]. Journal of Water and Wastewater, 2014, 25: 69-76.
|
[18] |
RUMMAN G A, MUSAWI T J, SILLANPAA M, et al. Adsorption performance of an amine-functionalized MCM-41 mesoporous silica nanoparticle system for ciprofloxacin removal[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100536.
|
[19] |
周丽枫, 王韧, 冯伟, 等. 巯基改性磁性介孔二氧化硅的制备及其对重金属Cd2+的吸附研究[J]. 食品与生物技术学报, 2018, 37(10): 1035-1041. doi: 10.3969/j.issn.1673-1689.2018.10.005
|
[20] |
OTALVARO J O, AVENA M, BRIGANTE M. Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103325. doi: 10.1016/j.jece.2019.103325
|
[21] |
ILIADE P, MILETTO I, COLUCCIA S, et al. Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: A physico-chemical characterization[J]. Research on Chemical Intermediates, 2012, 38: 785-794. doi: 10.1007/s11164-011-0417-5
|
[22] |
刘佳, 隋铭皓, 盛力. Mn-MCM-41介孔分子筛的制备、表征及催化性能研究[J]. 现代化工, 2018, 38(7): 93-97. doi: 10.16606/j.cnki.issn0253-4320.2018.07.021
|
[23] |
LU D W, XU S, QIU W, et al. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment[J]. Journal of Cleaner Production, 2020, 264: 121644. doi: 10.1016/j.jclepro.2020.121644
|
[24] |
WONG T C, WONG N B, TANNER P A. A Fourier transform IR study of the phase transitions and molecular order in the hexadecyltrimethylammonium sulfate/water system[J]. Journal of Colloid and Interface Science, 1997, 186(2): 325-331. doi: 10.1006/jcis.1996.4674
|
[25] |
曹渊, 王晓, 白英豪, 等. 氨丙基修饰MCM-41的制备及载药释药性能研究[J]. 功能材料, 2010, 41(5): 833-836.
|
[26] |
NICOLAS F, FRANCISCO J P A, MARTIN P P, et al. Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents[J]. Microporous and Mesoporous Materials, 2017, 239: 138-146. doi: 10.1016/j.micromeso.2016.10.012
|
[27] |
徐彦芹, 秦钊, 王烨, 等. NH2-MCM-41的改性及其pH响应性释药的研究[J]. 化工学报, 2020, 71(10): 4783-4791.
|
[28] |
SOUZA A P N, LICEA Y E, COLACA M V, et al. Green iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo dye: Kinetic and isotherm studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105062. doi: 10.1016/j.jece.2021.105062
|
[29] |
YOKOI T, KUBOTA Y, TATSUMI T. Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Applied Catalysis A:General, 2012, 421-422: 14-37. doi: 10.1016/j.apcata.2012.02.004
|
[30] |
ZHANG B, WU T, SUN D J, et al. NH2-MCM-41 supported on nitrogen-doped graphene as bifunctional composites for removing phenol compounds: Synergistic effect between catalytic degradation and adsorption[J]. Carbon, 2019, 147: 312-322. doi: 10.1016/j.carbon.2019.02.084
|
[31] |
QIN Q D, XU Y. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41[J]. Microporous and Mesoporous Materials, 2016, 232: 143-150. doi: 10.1016/j.micromeso.2016.06.018
|
[32] |
BROYER M, VALANGE S, BELLAT J P, et al. Influence of aging, thermal, hydrothermal, and mechanical treatments on the porosity of MCM-41 mesoporous silica[J]. Langmuir, 2002, 18(13): 5083-5091. doi: 10.1021/la0118255
|
[33] |
王英. 功能化MCM-41介孔材料的制备及其吸附稀土离子的性能研究[D]. 南昌: 南昌大学, 2017.
|
[34] |
EDER S, MULLER K, AZZARI P, et al. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit-derived activated carbon[J]. Chemical Engineering Journal, 2021, 404: 126519. doi: 10.1016/j.cej.2020.126519
|
[35] |
PASTI L, MARTUCCI A, NASSI M, et al. The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites[J]. Microporous and Mesoporous Materials, 2012, 160(36): 182-193.
|
[36] |
史琳. 多孔吸附材料对水中氯代烃的吸附性能研究[D]. 北京: 中国地质大学(北京), 2019.
|
[37] |
GIRISH C R, RAMACHANDRA M V. Mass transfer studies on adsorption of phenol from wastewater using lantana camara, forest waste[J]. International Journal of Chemical Engineering, 2016, 2: 1-11.
|
[38] |
陈星, 王小丽, 冉谷, 等. 氨基改性的MCM-41吸附水溶液中亚甲基蓝的研究[J]. 精细化工, 2016, 33(2): 188-194. doi: 10.13550/j.jxhg.2016.02.014
|
[39] |
秦庆东. 功能化介孔材料MCM-41选择性吸附水中污染物的性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
|
[40] |
ALMAZAN M C, MENDOZA M P, GARCIA M D, et al. The role of the porosity and oxygen groups on the adsorption of n-alkanes, benzene, trichloroethylene and 1, 2-dichloroethane on active carbons at zero surface coverage[J]. Carbon, 2007, 45(9): 1777-1785. doi: 10.1016/j.carbon.2007.05.003
|
[41] |
梁志杰. 功能化介孔硅吸附剂的制备及其选择吸附特性与作用机制[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[42] |
LIN R Y, LIANG Z J, YANG C, et al. Selective and enhanced adsorption of the monosubstituted benzenes on the Fe-modified MCM-41: Contribution of the substituent groups[J]. Chemosphere, 2019, 237: 124546. doi: 10.1016/j.chemosphere.2019.124546
|
[43] |
袁放. 腐殖酸和硝酸盐对铁屑去除地下水中六价铬的影响研究[D]. 北京: 中国地质大学(北京), 2014.
|
[44] |
PAN B, ZHANG D, LI H, et al. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid[J]. Environmental Science & Technology, 2013, 47(14): 7722-7728.
|
[45] |
梁喜花. 腐殖酸对零价铁处理地下水中三氯乙烯影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[46] |
刘华秋, 付融冰, 温东东, 等. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, 39(12): 3531-3541.
|
[47] |
朱立超, 刘元元, 李伟民, 等. 施氏矿物的化学合成及其对含Cr(Ⅵ)地下水吸附修复[J]. 环境科学, 2017, 38(2): 629-639. doi: 10.13227/j.hjkx.201608044
|
[48] |
ZHANG X T, LIU M Y, HAN R P. Adsorption of phosphate on UiO-66-NH2 prepared by a green synthesis method[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106672. doi: 10.1016/j.jece.2021.106672
|