-
近年来,随着“退二进三”“退城进园”等政策的实施,产生大量的遗留地块,土壤和地下水污染严重,其中不乏1,2-二氯乙烷(1,2-DCA)污染地块[1]。1,2-DCA是一种重要的有机溶剂和产品中间体,属于典型的“三致”化合物[2-3]。此外,1,2-DCA具有迁移性强、不易自然降解等特点,能长久地存在于地下水环境中,有较大的生态环境风险[4]。因此,如何高效去除1,2-DCA等氯代烃类污染物成为地下水污染治理领域亟待解决的问题。
地下水常用的修复技术包括抽出-处理、原位化学氧化/还原、可渗透性反应墙等技术(PRB)[5-8]。可渗透性反应墙技术作为一种原位地下水修复技术,在国内外氯代烃污染地下水修复中得到广泛研究和应用[9-10]。传统的PRB介质主要为零价铁材料,但零价铁存在易团聚、易氧化等问题[11]。因此,寻找一种环境友好、结构稳定和性能优异的介质材料对提升PRB性能具有重要意义。
介孔硅材料是一类通过自组装形成的孔道规则的无机多孔材料[12],孔径为2~50 nm。相较于传统多孔材料,介孔硅材料具有比表面积较大、孔道结构规则、可调、表面易修饰等特点[13-14]。MCM-41具有六方堆积结构,易于污染物扩散[15]。已有研究[12]表明,MCM-41对重金属、小分子有机物及染料等污染物具有良好的吸附效果。但MCM-41存在表面基团单一、内部晶格缺陷较少的弊端[16]。目前,常采用有机改性和金属掺杂等方式增加MCM-41表面基团和内部活性位点,进而提升其吸附和催化性能[16-17]。已有研究[18]表明,氨基的引入会增加MCM-41的活性位点。目前MCM-41材料的应用研究集中于工业废水中重金属和染料的去除[18-19],而在地下水修复中的应用研究鲜有报道。利用介孔硅材料比表面积大、孔道规则可调、表面易修饰等优点,研发高效介孔硅材料,将其作为PRB吸附介质或载体材料,对提升PRB传统介质材料吸附性差、易团聚失效等问题具有重要意义。
本研究采用共聚法制备氨基改性MCM-41材料,采用多种表征技术对材料微观形貌和结构进行表征;以NH2-MCM-41为1,2-DCA吸附剂,模拟地下水环境,探究其吸机理及影响因素,阐明NH2-MCM-41结构与吸附行为之间的关系,为改性MCM-41材料作为可渗透性反应墙介质提供基础参数,为介孔硅材料在氯代烃污染地下水修复中的应用提供技术支持。
氨基改性MCM-41对水中1,2-二氯乙烷的吸附
Adsorption of 1,2-dichloroethane in water by amino modified MCM-41
-
摘要: 为治理地下水中氯代烃污染,以3-氨丙基三乙氧基硅烷(APTES)为改性试剂,采用共聚法制备NH2-MCM-41。利用XRD、SEM、TEM、BET和FT-IR对材料结构进行表征,并研究材料对水中1,2-二氯乙烷(1,2-DCA)的吸附行为。结果表明:氨基取代部分硅羟基,造成孔道毛糙,未改变材料的六方堆积结构;改性后材料比表面积、孔容、孔径分别减小了约10%、25%和26%。氨基的引入增强了材料对1,2-DCA的亲和力和吸附能力,吸附容量由11.75 mg·g−1增加到15.59 mg·g−1,提升32.68%;NH2-MCM-41对1,2-DCA吸附初始阶段受物理吸附控制,后续过程主要受化学吸附控制;颗粒内扩散拟合表明颗粒内扩散过程是主要控速步骤;等温吸附拟合说明材料吸附位点分布均匀,吸附过程中单层与多层吸附共存;在温度为20 ℃,pH为7时NH2-MCM-41对1,2-DCA的吸附效果最佳;腐殖酸(HA)和共存阴离子对 NH2-MCM-41吸附1,2-DCA起抑制作用。由此可知,NH2-MCM-41能够有效地吸附水中1,2-DCA。该研究成果可为地下水氯代烃污染治理提供相关参考。Abstract: In order to control the pollution of chlorinated hydrocarbons in groundwater, NH2-MCM-41 was prepared by copolymerization with 3-aminopropyltriethoxysilane (APTES) as the modifier. The structure of NH2-MCM-41 was characterized by XRD, SEM, TEM, BET and FT-IR, and its adsorption behavior towards 1,2-DCA in water was studied. The results showed that amino groups substituted part of silicon hydroxyl groups, resulting in the rough pores, while slight change on the hexagonal stacking structure of NH2-MCM-41 occurred. After modification, the specific surface area, pore volume and pore diameter decreased by about 10%, 25% and 26%, respectively. The introduction of amino groups enhanced the affinity and adsorption capacity of NH2-MCM-41 toward 1,2-DCA, and the adsorption capacity increased from 11.75 mg·g−1 to 15.59 mg·g−1 with an increase rate of 32.68%. The kinetic fitting showed that at the initial stage, NH2-MCM-41 adsorbing 1,2-DCA was controlled by physical adsorption, and it was mainly controlled by chemical adsorption during the subsequent process. The fitting of particle internal diffusion showed that the particle internal diffusion process was the main speed control step. Isothermal adsorption fitting showed that the adsorption sites of NH2-MCM-41 were evenly distributed, and monolayer and multilayer adsorption coexisted in the adsorption process. At 20 ℃ and pH 7, NH2-MCM-41 presented the best adsorption toward 1,2-DCA. Humic acid (HA) and coexisting anions inhibited the adsorption of 1,2-DCA on NH2-MCM-41. Thus, NH2-MCM-41 could effectively adsorb 1,2-DCA in water. The research results can provide a relevant reference for the treatment of polluted groundwater by chlorinated hydrocarbon.
-
Key words:
- MCM-41 /
- amino /
- functionalization /
- adsorption /
- 1,2- dichloroethane
-
表 1 MCM-41和NH2-MCM-41的比表面积以及孔的相关参数
Table 1. Specific surface area of MCM-41 and NH2-MCM-41 and related parameters of pores
样品 比表面积/
(m2·g−1)孔容/
(cm3·g−1)孔径/
nmMCM-41 860.17 0.85 4.78 NH2-MCM-41 776.37 0.64 3.53 表 2 MCM-41和NH2-MCM-41吸附1,2-DCA的动力学拟合参数
Table 2. Kinetic model parameters for the adsorption of 1,2-DCA on MCM-41 and NH2-MCM-41
样品 qe
/(mg·g−1)准一级动力学 准二级动力学 k1 qe
/(mg·g−1)R2 k2 qe
/(mg·g−1)R2 MCM-41 11.75 0.17 11.37 0.989 0.023 11.79 0.997 NH2-MCM-41 15.59 0.16 15.13 0.988 0.016 15.73 0.998 表 3 MCM-41和NH2-MCM-41吸附1,2-DCA的颗粒内扩散模型拟合参数
Table 3. Intra-particle diffusion model parameters for 1,2-DCA adsorption on MCM-41 and NH2-MCM-41
样品 第1阶段 第2阶段 第3阶段 kp1 C1 R2 kp2 C2 R2 kp3 C3 R2 MCM-41 2.93 0.098 0.992 0.84 6.533 0.986 0.12 10.547 0.667 NH2-MCM-41 3.85 0.067 0.998 0.95 9.116 0.989 0.24 13.205 0.762 表 4 MCM-41和NH2-MCM-41吸附1,2-DCA的等温拟合曲线参数
Table 4. Parameters of isothermal fitting curves for the adsorption of 1,2-DCA on MCM-41 and NH2-MCM-41
样品 Langmuir Freundlich qm
/(mg·g−1)b R2 kf n R2 MCM-41 24.38 0.055 0.936 2.06 1.65 0.894 NH2-MCM-41 29.97 0.069 0.956 3.07 1.74 0.909 -
[1] 范婷婷, 夏菲洋, 孔令雅, 等. 场地地下水中氯代甲烷烃自然衰减机制[J]. 环境工程学报, 2021, 15(12): 3934-3945. doi: 10.12030/j.cjee.202108083 [2] CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343: 619-628. doi: 10.1016/j.cej.2018.03.011 [3] 张凤君, 刘哲华, 苏小四, 等. 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1212-1220. doi: 10.13278/j.cnki.jjuese.20170240 [4] JEONG W G, KIM J G, BAEK K. Removal of 1, 2-dichloroethane in groundwater using Fenton oxidation[J]. Journal of Hazardous Materials, 2022, 428: 128253. doi: 10.1016/j.jhazmat.2022.128253 [5] 孙军亮, 宫志强, 李璐, 等. 某氯代烃污染场地地下水抽出方案优化[J]. 环境工程, 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023 [6] SANTOSH P G, SAROHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents: Application of mesoporous materials: A review[J]. Journal of Environmental Management, 2018, 211: 83-102. [7] 王泓泉. 污染地下水可渗透反应墙(PRB)技术研究进展[J]. 环境工程技术学报, 2020, 10(2): 251-259. doi: 10.12153/j.issn.1674-991X.20190129 [8] 孟宪荣, 葛松, 许伟, 等. 原位电阻热脱附修复氯代烃污染土壤[J]. 环境工程学报, 2021, 15(2): 669-676. doi: 10.12030/j.cjee.202009077 [9] ANNE W, AKI S R, RICHARD T A. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 68-82. doi: 10.1016/j.jconhyd.2013.05.001 [10] 崔海炜, 孙继朝, 张英, 等. 可渗透反应墙原位修复垃圾渗滤液污染地下水[J]. 环境工程学报, 2012, 6(8): 2698-2704. [11] 张永祥, 王晋昊, 井琦, 等. 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496. doi: 10.16085/j.issn.1000-6613.2020-1852 [12] COSTA J A S, JESUS R A, SANTOS D O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259. doi: 10.1016/j.jece.2021.105259 [13] 李美元, 白金, 杨丽娜, 等. 金属改性硅基介孔材料及其加氢脱硫研究进展[J]. 化学通报, 2017, 80(5): 448-453. doi: 10.14159/j.cnki.0441-3776.2017.05.006 [14] ENSHIRAH D N. Adsorption of heavy metals on functionalized-mesoporous silica: A review[J]. Microporous and Mesoporous Materials, 2017, 247: 145-157. doi: 10.1016/j.micromeso.2017.03.050 [15] ALARDHI S M, ALBAYATI T M, ALRUBAYE J M. Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column[J]. Heliyon, 2020, 6(1): e03253. doi: 10.1016/j.heliyon.2020.e03253 [16] 旦辉. 硅基介孔材料的控制合成及其核素吸附性能研究[D]. 绵阳: 西南科技大学, 2020. [17] GETKESH E M, YOUNESI H, SHAHBAZI A. Nitrate removal from aqueous solution using nanoporous MCM-41 silica adsorbent functionalized with diamine group[J]. Journal of Water and Wastewater, 2014, 25: 69-76. [18] RUMMAN G A, MUSAWI T J, SILLANPAA M, et al. Adsorption performance of an amine-functionalized MCM-41 mesoporous silica nanoparticle system for ciprofloxacin removal[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100536. [19] 周丽枫, 王韧, 冯伟, 等. 巯基改性磁性介孔二氧化硅的制备及其对重金属Cd2+的吸附研究[J]. 食品与生物技术学报, 2018, 37(10): 1035-1041. doi: 10.3969/j.issn.1673-1689.2018.10.005 [20] OTALVARO J O, AVENA M, BRIGANTE M. Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103325. doi: 10.1016/j.jece.2019.103325 [21] ILIADE P, MILETTO I, COLUCCIA S, et al. Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: A physico-chemical characterization[J]. Research on Chemical Intermediates, 2012, 38: 785-794. doi: 10.1007/s11164-011-0417-5 [22] 刘佳, 隋铭皓, 盛力. Mn-MCM-41介孔分子筛的制备、表征及催化性能研究[J]. 现代化工, 2018, 38(7): 93-97. doi: 10.16606/j.cnki.issn0253-4320.2018.07.021 [23] LU D W, XU S, QIU W, et al. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment[J]. Journal of Cleaner Production, 2020, 264: 121644. doi: 10.1016/j.jclepro.2020.121644 [24] WONG T C, WONG N B, TANNER P A. A Fourier transform IR study of the phase transitions and molecular order in the hexadecyltrimethylammonium sulfate/water system[J]. Journal of Colloid and Interface Science, 1997, 186(2): 325-331. doi: 10.1006/jcis.1996.4674 [25] 曹渊, 王晓, 白英豪, 等. 氨丙基修饰MCM-41的制备及载药释药性能研究[J]. 功能材料, 2010, 41(5): 833-836. [26] NICOLAS F, FRANCISCO J P A, MARTIN P P, et al. Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents[J]. Microporous and Mesoporous Materials, 2017, 239: 138-146. doi: 10.1016/j.micromeso.2016.10.012 [27] 徐彦芹, 秦钊, 王烨, 等. NH2-MCM-41的改性及其pH响应性释药的研究[J]. 化工学报, 2020, 71(10): 4783-4791. [28] SOUZA A P N, LICEA Y E, COLACA M V, et al. Green iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo dye: Kinetic and isotherm studies[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105062. doi: 10.1016/j.jece.2021.105062 [29] YOKOI T, KUBOTA Y, TATSUMI T. Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Applied Catalysis A:General, 2012, 421-422: 14-37. doi: 10.1016/j.apcata.2012.02.004 [30] ZHANG B, WU T, SUN D J, et al. NH2-MCM-41 supported on nitrogen-doped graphene as bifunctional composites for removing phenol compounds: Synergistic effect between catalytic degradation and adsorption[J]. Carbon, 2019, 147: 312-322. doi: 10.1016/j.carbon.2019.02.084 [31] QIN Q D, XU Y. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41[J]. Microporous and Mesoporous Materials, 2016, 232: 143-150. doi: 10.1016/j.micromeso.2016.06.018 [32] BROYER M, VALANGE S, BELLAT J P, et al. Influence of aging, thermal, hydrothermal, and mechanical treatments on the porosity of MCM-41 mesoporous silica[J]. Langmuir, 2002, 18(13): 5083-5091. doi: 10.1021/la0118255 [33] 王英. 功能化MCM-41介孔材料的制备及其吸附稀土离子的性能研究[D]. 南昌: 南昌大学, 2017. [34] EDER S, MULLER K, AZZARI P, et al. Mass transfer mechanism and equilibrium modelling of hydroxytyrosol adsorption on olive pit-derived activated carbon[J]. Chemical Engineering Journal, 2021, 404: 126519. doi: 10.1016/j.cej.2020.126519 [35] PASTI L, MARTUCCI A, NASSI M, et al. The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites[J]. Microporous and Mesoporous Materials, 2012, 160(36): 182-193. [36] 史琳. 多孔吸附材料对水中氯代烃的吸附性能研究[D]. 北京: 中国地质大学(北京), 2019. [37] GIRISH C R, RAMACHANDRA M V. Mass transfer studies on adsorption of phenol from wastewater using lantana camara, forest waste[J]. International Journal of Chemical Engineering, 2016, 2: 1-11. [38] 陈星, 王小丽, 冉谷, 等. 氨基改性的MCM-41吸附水溶液中亚甲基蓝的研究[J]. 精细化工, 2016, 33(2): 188-194. doi: 10.13550/j.jxhg.2016.02.014 [39] 秦庆东. 功能化介孔材料MCM-41选择性吸附水中污染物的性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [40] ALMAZAN M C, MENDOZA M P, GARCIA M D, et al. The role of the porosity and oxygen groups on the adsorption of n-alkanes, benzene, trichloroethylene and 1, 2-dichloroethane on active carbons at zero surface coverage[J]. Carbon, 2007, 45(9): 1777-1785. doi: 10.1016/j.carbon.2007.05.003 [41] 梁志杰. 功能化介孔硅吸附剂的制备及其选择吸附特性与作用机制[D]. 哈尔滨: 哈尔滨工业大学, 2017. [42] LIN R Y, LIANG Z J, YANG C, et al. Selective and enhanced adsorption of the monosubstituted benzenes on the Fe-modified MCM-41: Contribution of the substituent groups[J]. Chemosphere, 2019, 237: 124546. doi: 10.1016/j.chemosphere.2019.124546 [43] 袁放. 腐殖酸和硝酸盐对铁屑去除地下水中六价铬的影响研究[D]. 北京: 中国地质大学(北京), 2014. [44] PAN B, ZHANG D, LI H, et al. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid[J]. Environmental Science & Technology, 2013, 47(14): 7722-7728. [45] 梁喜花. 腐殖酸对零价铁处理地下水中三氯乙烯影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [46] 刘华秋, 付融冰, 温东东, 等. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, 39(12): 3531-3541. [47] 朱立超, 刘元元, 李伟民, 等. 施氏矿物的化学合成及其对含Cr(Ⅵ)地下水吸附修复[J]. 环境科学, 2017, 38(2): 629-639. doi: 10.13227/j.hjkx.201608044 [48] ZHANG X T, LIU M Y, HAN R P. Adsorption of phosphate on UiO-66-NH2 prepared by a green synthesis method[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106672. doi: 10.1016/j.jece.2021.106672