[1] 宗永臣. 西藏地区自然环境对污水处理效果的影响初探[J]. 市政技术, 2017, 35(3): 132-135. doi: 10.3969/j.issn.1009-7767.2017.03.041
[2] 郝凯越, 陈相宇, 李远威, 等. 林芝市紫外辐射与空气质量的相关性分析[J]. 环境科学与技术, 2018, 041(7): 103-106. doi: 10.19672/j.cnki.1003-6504.2018.07.018
[3] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063
[4] NIU L H, LI Y, WANG P, et al. Altitude-scale variation in nitrogen-removal bacterial communities from municipal wastewater treatment plants distributed along a 3600-m altitudinal gradient in China[J]. Science of the Total Environment, 2016, 559: 38-44. doi: 10.1016/j.scitotenv.2016.03.175
[5] 朱康. 高寒地区农村污水处理技术 [D]. 西宁: 青海大学, 2015.
[6] 沈鸿滢, 郭玉, 王艳英, 等. 高原地区污水处理厂工程项目案例分析[J]. 净水技术, 2014, 33(2): 9-12,21. doi: 10.3969/j.issn.1009-0177.2014.02.003
[7] 胡林林, 王建龙, 文湘华, 等. 低溶解氧条件下生物脱氮研究中的新现象[J]. 应用与环境生物学报, 2003(4): 444-447. doi: 10.3321/j.issn:1006-687X.2003.04.025
[8] 白璐, 王淑莹, 彭永臻, 等. 低溶解氧条件下活性污泥沉降性的研究[J]. 工业水处理, 2006(5): 54-56. doi: 10.3969/j.issn.1005-829X.2006.05.017
[9] LI L, QIAN G S, Ye L L, et al. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant[J]. Water Research, 2018, 140: 77-89. doi: 10.1016/j.watres.2018.04.036
[10] LV Y F, PAN J J, HUO T R, et al. Enhance the treatment of low strength wastewater at low temperature with the coexistence system of AnAOB and heterotrophic bacteria: Performance and bacterial community[J]. Science of the Total Environment, 2020, 714: 136799. doi: 10.1016/j.scitotenv.2020.136799
[11] REN Z J, FU X L, ZHANG G M, et al. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter[J]. Journal of Environmental Management, 2022, 301: 113859. doi: 10.1016/j.jenvman.2021.113859
[12] CAMPANI G, RIBEIRO M P A, HORTA A C L, et al. Oxygen transfer in a pressurized airlift bioreactor[J]. Bioprocess and Biosystems Engineering, 2015, 38(8): 1559-1567. doi: 10.1007/s00449-015-1397-4
[13] 韩震, 李淑萍, 朱光灿, 等. 高原地区曝气池氧传质的影响因素研究[J]. 水处理技术, 2021, 47(6): 34-38. doi: 10.16796/j.cnki.1000-3770.2021.06.007
[14] YEO H, AN J, REID R, et al. Contribution of Liquid/Gas Mass-Transfer Limitations to Dissolved Methane Oversaturation in Anaerobic Treatment of Dilute Wastewater[J]. Environmental Science and Technology, 2015, 49(17): 10366-10372. doi: 10.1021/acs.est.5b02560
[15] ROGER M, BROWN F, GABRIELLI W, et al. Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli[J]. Current Biology, 2018, 28(1): 140-145. doi: 10.1016/j.cub.2017.11.050
[16] CHEN Y, LI S P, LU Y Z, et al. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) at low atmosphere pressure[J]. Biochemical Engineering Journal, 2020, 160: 107629. doi: 10.1016/j.bej.2020.107629
[17] 韩震, 朱光灿, 李淑萍, 等. 一种适用于高原城镇生活污水处理的改良型双污泥除磷脱氮装置和工艺CN201911205387.3[P]. 2020-03-24.
[18] APHA, A. W. (Ed. ). Standard Methods for Water and Wastewater Examination. 22nd ed[S]. American Public Health Association, Washington, DC, 2012.
[19] CHUANG S H, OUYANG C F. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system[J]. Water Research, 2000, 34(8): 2283-2290. doi: 10.1016/S0043-1354(99)00380-2
[20] HENZE M, HARREMOS P, JANSEN J L C, et al. Wastewater treatment: Biological and chemical processes [M]. Berlin: Springer-Verlag, 1997.