-
目前城镇生活污水基本采用活性污泥法除磷脱氮工艺,通过功能菌群实现氮磷的去除。青藏高原海拔3 000~5 000 m,年均气压、含氧量、大气密度分别相当于海平面的50%、60%和66%,其紫外线辐射强度是内陆其他地区的1.5~2.5倍[1-2]。高原地区的平均温度低、氧含量低和气压低的“三低”特殊环境,对活性污泥系统的运行、微生物的代谢以及污染物的去除途径造成不同程度的影响[3],随着海拔的升高,高原污水处理厂中的脱氮微生物显著减少[4]。高海拔地区大部分生活污水处理厂的设计及建设照搬内地经验,未充分考虑高海拔条件对污水处理系统运行的影响[5]。已有较多关于低氧和低温条件对活性污泥系统影响的研究,发现相同曝气量下高原地区的有效供氧量仅为平原地区的50%左右[6],低溶解氧会抑制硝化作用,促进短程硝化和同步硝化反硝化的进行[7],且低氧条件影响好氧吸磷的速率[8]。低温是影响活性污泥系统的重要因素之一,可使微生物的比增长速率降低,活性污泥生物量也随之减少[9],微生物的代谢活性降低[10],造成硝化和反硝化作用减弱,导致整体脱氮效能下降[11]。
在温度不变时,气体在水中的溶解度随着气压的降低而减小,气压的变化不仅会直接影响氧气的溶解度,还将间接影响氧气的传质[12]。本团队前期研究结果表明,氧气的传质受到曝气量、大气压力以及污泥浓度的影响,其影响程度为曝气量>大气压力>污泥浓度[13]。此外,污水生物处理不仅包含好氧微生物的氧气利用,也包括异养微生物降解有机物生成二氧化碳、反硝化微生物还原硝酸盐生成氮气等过程。低压导致二氧化碳以及氮气分压的降低,造成二氧化碳和氮气的溶解度下降,而气液传质的限制将形成潜在的气体产物过饱和问题,抑制反应的正向进行[14]。二氧化碳溶解度的降低也将引起反应池的pH上升,影响微生物的正常代谢[15]。前期研究[16]表明,即使控制相同的溶解氧条件,不同气压培养下的活性污泥群落结构及功能微生物活性也存在差异。上述研究结果表明,气压不仅影响活性污泥的微生物结构和代谢活性,而且影响污水处理过程中的溶解氧含量和气体的传质,进而影响污染物的去除效率和途径。为实现高海拔地区生活污水氮磷的有效去除,本研究针对低压低氧环境,提出了一套改良型双污泥除磷脱氮工艺[17],该工艺可有效富集功能菌群,工艺简洁,运维简单,在低压条件下具有良好稳定的处理效率,但气压对该系统碳氮磷去除效率和去除途径的影响尚不明晰。为此,本文以改良型双污泥除磷脱氮工艺在不同气压条件下稳态运行期间的数据为基础,探讨了比较不同气压下的工艺运行效能和污染物的去除途径,结合物料衡算方法,分析3气压对改良型双污泥除磷脱氮工艺系统的影响机制,为改良型双污泥工艺在高海拔地区市政污水处理中的应用提供参考。
气压对改良型双污泥工艺污染物去除途径的影响
Influence of atmospheric pressure on pollutants removal path in the modified dual-sludge process
-
摘要: 基于改良型双污泥除磷脱氮工艺在不同气压条件下稳态运行数据,探讨了海拔分别为400 (96 kPa)、2 800(72 kPa)和3 300 m(65 kPa)下的工艺运行效能。结果表明,当气压从96 kPa降低至65 kPa,COD的去除率从87.45%提高至90.94%,低气压促进了聚磷菌厌氧释磷过程中胞内碳源的合成,有效提高了好氧吸磷效率,系统总磷去除效率从84.23%提升至90.44%。随气压降低,氨氧化菌的丰度和活性降低,低氧池硝化功能受限,进而限制了同步硝化反硝化作用,系统脱氮量减少,脱氮率从73.37%降低至69.89%。工艺各单元水质变化和物料衡算分析结果表明,各气压条件下改良型双污泥工艺磷主要通过好氧吸磷和反硝化聚磷过程去除,氮主要通过厌氧池的反硝化和低氧池的同步硝化反硝化过程去除。此外,随着气压的降低,曝气池中微生物的同化脱氮功能增强。本文结果为改良型双污泥工艺在高海拔地区市政污水处理中的应用提供了一定的理论参考。Abstract: In this study, the operating efficiency of the modified dual-sludge process was discussed based on the data of its steady-state operation at different altitudes of 96 kPa (400 m), 72 kPa (2800 m) and 65 kPa (3300 m). The results showed that when the atmospheric pressure decreased from 96 kPa to 65 kPa, the removal rate of COD increased from 87.45% to 90.94%. The low atmospheric pressure promoted the synthesis of intracellular carbon sources during the anaerobic phosphorus release process of phosphate-accumulating organisms. Therefore, the aerobic phosphorus absorption efficiency increased effectively, and the removal efficiency of total phosphorus in the system increased from 84.23% to 90.44%. The abundance and activity of ammonia oxidizing bacteria decreased with the decrease of atmospheric pressure, and the nitrification function of the hypoxia tank was limited. Then the simultaneous nitrification and denitrification were limited and the denitrification amount of the system decreased, the corresponding denitrification rate decreased from 73.37% to 69.89%. The results of water quality variations along the units in the process and material balance analysis showed that phosphorus was mainly removed by the aerobic phosphorus absorption and denitrifying phosphate-accumulating at 96 kPa, 72 kPa and 65 kPa. Nitrogen was mainly removed by the denitrification process in the anaerobic tank and the simultaneous nitrification and denitrification in the hypoxia tank. In addition, the assimilative denitrification in the aeration tank was enhanced with the decrease of atmospheric pressure. The result in this study provides a certain theoretical basis for the application of the modified dual-sludge process in municipal sewage treatment in high altitude areas.
-
表 1 不同气压下各污染物平均进出水浓度
Table 1. Average concentrations of pollutants in influent and effluent at different air pressures mg·L−1
气压/kPa COD/(mg·L−1) TP/(mg·L−1) 氨氮/(mg·L−1) TN/(mg·L−1) 进水 出水 进水 出水 进水 出水 进水 出水 96 215.84±5.67 3.36±0.15 21.90±1.86 23.60±2.02 27.20±4.92 0.54±0.25 0.76±0.98 6.39±1.78 72 213.32±6.38 3.32±0.23 21.50±1.99 23.57±2.37 17.33±5.26 0.38±0.28 0.48±1.27 6.57±2.05 65 207.55±8.45 3.55±0.36 23.13±2.03 24.84±2.01 18.91±3.60 0.35±0.14 0.64±0.71 7.52±1.11 表 2 不同气压下COD的物料平衡
Table 2. Material balance of COD at different air pressures
压强/kPa Minf.COD/(mg·d−1) Meff.COD/(mg·d−1) MAN.COD/(mg·d−1) MH.COD/(mg·d−1) M(A-S) .COD/(mg·d−1) MW.COD/(mg·d−1) 96 5180.23 652.9 1644.32 2198.39 194.09 481 72 5119.71 415.9 2148.22 2277.5 102.94 481 65 4981.2 453.75 1890.6 2137.68 79.38 481 表 3 不同气压下氮的物料平衡
Table 3. Nitrogen material balance at different pressures
压强/kPa Minf.N/(mg·d−1) Meff.N/(mg·d−1) MDE.N Mloss.N./(mg·d−1) MW.N/(mg·d−1) MAN.N/(mg·d−) MH.N/(mg·d−1) MA.N/(mg·d−1) 96 566.376 153.384 171.984 199.968 48.708 −1.764 32.5 72 565.548 157.644 128.876 179.606 91.316 −2.682 32.5 65 596.089 180.373 131.25 181.345 83.068 26.264 32.5 表 4 不同气压下磷的物料平衡
Table 4. Material balance of phosphorus at different pressures
压强/kPa Minf.P/(mg·d−1) Meff.P/(mg·d−1) MW.P MA.P/(mg·d−1) MO.P/(mg·d−1) MAN.P/(mg·d−1) 96 80.04 12.89 201.62 152.06 298.09 72 79.71 9 277.95 154.27 369.11 65 85.28 8.48 246.43 338.4 520.31 -
[1] 宗永臣. 西藏地区自然环境对污水处理效果的影响初探[J]. 市政技术, 2017, 35(3): 132-135. doi: 10.3969/j.issn.1009-7767.2017.03.041 [2] 郝凯越, 陈相宇, 李远威, 等. 林芝市紫外辐射与空气质量的相关性分析[J]. 环境科学与技术, 2018, 041(7): 103-106. doi: 10.19672/j.cnki.1003-6504.2018.07.018 [3] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063 [4] NIU L H, LI Y, WANG P, et al. Altitude-scale variation in nitrogen-removal bacterial communities from municipal wastewater treatment plants distributed along a 3600-m altitudinal gradient in China[J]. Science of the Total Environment, 2016, 559: 38-44. doi: 10.1016/j.scitotenv.2016.03.175 [5] 朱康. 高寒地区农村污水处理技术 [D]. 西宁: 青海大学, 2015. [6] 沈鸿滢, 郭玉, 王艳英, 等. 高原地区污水处理厂工程项目案例分析[J]. 净水技术, 2014, 33(2): 9-12,21. doi: 10.3969/j.issn.1009-0177.2014.02.003 [7] 胡林林, 王建龙, 文湘华, 等. 低溶解氧条件下生物脱氮研究中的新现象[J]. 应用与环境生物学报, 2003(4): 444-447. doi: 10.3321/j.issn:1006-687X.2003.04.025 [8] 白璐, 王淑莹, 彭永臻, 等. 低溶解氧条件下活性污泥沉降性的研究[J]. 工业水处理, 2006(5): 54-56. doi: 10.3969/j.issn.1005-829X.2006.05.017 [9] LI L, QIAN G S, Ye L L, et al. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant[J]. Water Research, 2018, 140: 77-89. doi: 10.1016/j.watres.2018.04.036 [10] LV Y F, PAN J J, HUO T R, et al. Enhance the treatment of low strength wastewater at low temperature with the coexistence system of AnAOB and heterotrophic bacteria: Performance and bacterial community[J]. Science of the Total Environment, 2020, 714: 136799. doi: 10.1016/j.scitotenv.2020.136799 [11] REN Z J, FU X L, ZHANG G M, et al. Study on performance and mechanism of enhanced low-concentration ammonia nitrogen removal from low-temperature wastewater by iron-loaded biological activated carbon filter[J]. Journal of Environmental Management, 2022, 301: 113859. doi: 10.1016/j.jenvman.2021.113859 [12] CAMPANI G, RIBEIRO M P A, HORTA A C L, et al. Oxygen transfer in a pressurized airlift bioreactor[J]. Bioprocess and Biosystems Engineering, 2015, 38(8): 1559-1567. doi: 10.1007/s00449-015-1397-4 [13] 韩震, 李淑萍, 朱光灿, 等. 高原地区曝气池氧传质的影响因素研究[J]. 水处理技术, 2021, 47(6): 34-38. doi: 10.16796/j.cnki.1000-3770.2021.06.007 [14] YEO H, AN J, REID R, et al. Contribution of Liquid/Gas Mass-Transfer Limitations to Dissolved Methane Oversaturation in Anaerobic Treatment of Dilute Wastewater[J]. Environmental Science and Technology, 2015, 49(17): 10366-10372. doi: 10.1021/acs.est.5b02560 [15] ROGER M, BROWN F, GABRIELLI W, et al. Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli[J]. Current Biology, 2018, 28(1): 140-145. doi: 10.1016/j.cub.2017.11.050 [16] CHEN Y, LI S P, LU Y Z, et al. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) at low atmosphere pressure[J]. Biochemical Engineering Journal, 2020, 160: 107629. doi: 10.1016/j.bej.2020.107629 [17] 韩震, 朱光灿, 李淑萍, 等. 一种适用于高原城镇生活污水处理的改良型双污泥除磷脱氮装置和工艺CN201911205387.3[P]. 2020-03-24. [18] APHA, A. W. (Ed. ). Standard Methods for Water and Wastewater Examination. 22nd ed[S]. American Public Health Association, Washington, DC, 2012. [19] CHUANG S H, OUYANG C F. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphorus removal system[J]. Water Research, 2000, 34(8): 2283-2290. doi: 10.1016/S0043-1354(99)00380-2 [20] HENZE M, HARREMOS P, JANSEN J L C, et al. Wastewater treatment: Biological and chemical processes [M]. Berlin: Springer-Verlag, 1997.