[1] 郭姣艳, 孙艳波, 马向东, 等. 濮阳市蔬菜中有机磷和氨基甲酸酯类农药残留调查分析[J]. 中国卫生检验杂志, 2022, 32(4): 487-490.
[2] 董恒涛, 姚劲挺, 郝红元, 等. 超高效液相色谱三重四极杆质谱联用法测定地表水中的氨基甲酸酯类农药残留[J]. 环境化学, 2018, 37(2): 367-370.
[3] WEI J C, WEI B, YANG W, et al. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique[J]. Food and Chemical Toxicology, 2018, 119: 430-437. doi: 10.1016/j.fct.2017.12.019
[4] BORDBAR M, NGUYEN T, ARDUINI F, et al. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice[J]. Microchimica Acta, 2020, 187(11): 621. doi: 10.1007/s00604-020-04596-x
[5] DE SIQUEIRA A, RODRIGUES K, GON ALVES-JUNIOR V, et al. Exhumation of Wistar rats experimentally exposed to the carbamate pesticides aldicarb and carbofuran: A pathological and toxicological study[J]. Experimental & Toxicologic Pathology, 2016, 68(6): 307-314.
[6] 郭斌, 陈灿, 李士永, 等. Qu EChERS-柱后衍生高效液相色谱法测定蔬菜中6种氨基甲酸酯类农药及其代谢物[J]. 中国卫生检验杂志, 2022, 32(13): 1556-1559.
[7] 孙晓静. 海水中氨基甲酸酯类农药的光降解研究[D]. 青岛: 中国海洋大学, 2015.
[8] 太欧. 地下水中六种氨基甲酸酯类农药UPLC-MS/MS方法的建立与应用[D]. 北京: 中国地质大学(北京), 2019.
[9] CHANDRAKAR C. Occurrence of carbaryl, DDT and deltamethrin residues in bovine milk in Chhattisgarh, India and risk assessment to human health[J]. Journal of Animal Research, 2020, 10(2): 178.
[10] 燕娅娅, 刘峰, 徐飞. 一起克百威致急性中毒事件的调查分析[J]. 中国卫生检验杂志, 2022, 32(13): 1623-1625.
[11] 李国强. 应城市农产品及其生长环境农药残留现状评估[J]. 化学分析计量, 2011, 20(2): 5. doi: 10.3969/j.issn.1008-6145.2011.02.022
[12] 姚梦东, 姚梦东, 徐雪婧, 等. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052
[13] WASEEM H. 活化过硫酸盐氧化降解水中农药的研究[D]. 广州: 华南理工大学, 2020.
[14] 赵泽华, 张后虎, 许彬, 等. 三维电催化氧化技术处理草铵膦农药废水[J]. 环境工程学报, 2017, 11(1): 93-97. doi: 10.12030/j.cjee.201508162
[15] 张丽曼. 二氧化铅电极电催化降解农药废水的研究[D]. 天津: 河北工业大学, 2020.
[16] 智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64. doi: 10.12030/j.cjee.201705098
[17] 陈灿, 秦岳军, 张燕. 电催化氧化技术处理氨基甲酸酯类农药废水[J]. 广州化工, 2014, 42(6): 58-60. doi: 10.3969/j.issn.1001-9677.2014.06.021
[18] 邹徐. BDD电极电化学氧化去除水中典型农药特性及机理研究[D]. 长沙: 湖南大学, 2018.
[19] ÇELEBI M S, OTURAN N, ZAZOU H, et al. Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology[J]. Separation and Purification Technology, 2015, 156: 996-1002. doi: 10.1016/j.seppur.2015.07.025
[20] SANTOS T É S, SOLVA R S, CARLESI J C, et al. The influence of the synthesis method of Ti/RuO2 electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl[J]. Materials Chemistry and Physics, 2014, 148(1): 39-47.
[21] YANG Y, XIA Y, WEI F, et al. Electrochemical oxidation of the pesticide nitenpyram using a Gd-PbO2 anode: Operation parameter optimization and degradation mechanism[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8): 2120-2128.
[22] HAI H, XING X, LI S, et al. Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation[J]. Science of the Total Environment, 2020, 738: 139909. doi: 10.1016/j.scitotenv.2020.139909
[23] WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030
[24] ZHI D, ZHANG J, WANG J, et al. Electrochemical treatments of coking wastewater and coal gasifcation wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes[J]. Journal of Environmental Management, 2020, 265: 110571. doi: 10.1016/j.jenvman.2020.110571
[25] 智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2017, 38(5): 1858-1867.
[26] 韩金名. NF/CN-TF/Ti4O7电化学体系对磺胺甲基嘧啶降解机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[27] YOU S, LIU B, GAO Y, et al. Monolithic porous magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater[J]. Electrochimica Acta, 2016, 214: 326-335. doi: 10.1016/j.electacta.2016.08.037
[28] LIN H, NIU J, LIANG S, et al. Development of macroporous magnéli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances[J]. Chemical Engineering Journal, 2018, 354: 1058-1067. doi: 10.1016/j.cej.2018.07.210
[29] ZHANG J, ZHOU Y, YAO B, et al. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique[J]. Journal of Hazardous Materials, 2021, 418: 126313. doi: 10.1016/j.jhazmat.2021.126313
[30] LIANG S, LIN H, YAN X, et al. Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics, products, and toxicity[J]. Chemical Engineering Journal, 2018, 332: 628-636. doi: 10.1016/j.cej.2017.09.109
[31] 谭志谋. 阳极氧化二氧化钛纳米管和纳米孔阵列的形成机理[D]. 杭州: 浙江大学, 2013.
[32] 李洪义, 陈言慧, 郑雄领, 等. 二氧化钛纳米管的制备和应用[J]. 金属功能材料, 2022, 29(5): 487-490. doi: 10.13228/j.boyuan.issn1005-8192.20220116
[33] GENG P, SU J, CHRISTOS C, et al. Highly-ordered magneli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation[J]. Electrochimica Acta, 2015, 153: 316-324. doi: 10.1016/j.electacta.2014.11.178
[34] WANG C, NIU J, YIN L, et al. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production[J]. Chemical Engineering Journal, 2018, 346: 662-671. doi: 10.1016/j.cej.2018.03.159
[35] XU C, NIU J, XIE H, et al. Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode[J]. Journal of Hazardous Materials, 2021, 402: 123530. doi: 10.1016/j.jhazmat.2020.123530
[36] ZHI D, WANG J, ZHOU Y, et al. Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction[J]. Chemical Engineering Journal, 2020, 383: 123149. doi: 10.1016/j.cej.2019.123149
[37] YANG Y, HOFFMANN M. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environmental Science & Technology, 2016, 50(21): 11888-11894.
[38] LI D, TANG J, ZHOU X, et al. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode[J]. Chemosphere, 2016, 149: 49-56. doi: 10.1016/j.chemosphere.2016.01.078
[39] 张峰源. 高活性电极的制备及电化学氧化处理煤化工废水的研究[D]. 北京: 中国矿业大学(北京), 2019.
[40] LIN H, NIU J, XU Y, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution[J]. Electrochimica Acta, 2013, 97: 167-174. doi: 10.1016/j.electacta.2013.03.019
[41] AI S, GAO M, ZHANG W, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines[J]. Talanta, 2004, 62: 445-450. doi: 10.1016/j.talanta.2003.08.019
[42] ZHOU C, WANG Y, CHEN J, et al. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, mechanism, toxicity and energy consumption[J]. Science of the Total Environment, 2019, 688: 75-82. doi: 10.1016/j.scitotenv.2019.06.197
[43] ZHI D, QIN J, ZHOU H, et al. Removal of tetracycline by electrochemical oxidation using a Ti/SnO2-Sb anode: Characterization, kinetics, and degradation pathway[J]. Journal of Applied Electrochemistry, 2017, 47(12): 1313-1322. doi: 10.1007/s10800-017-1125-7
[44] RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
[45] FRONTISTIS Z, ANTONOPOULOU M, YAZIRDAGI M, et al. Boron-doped diamond electrooxidation of ethyl paraben: The effect of electrolyte on by-products distribution and mechanisms[J]. Journl of Environment. Management, 2017, 195: 148-156.
[46] KLAMKLANG S, VERGNES H, SENOCQ F, et al. Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment[J]. Journal of Applied Electrochemistry, 2010, 40(5): 997-1004. doi: 10.1007/s10800-009-9968-1
[47] SCIALDONE O, GALIA A, GUARISCO C, et al. Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters[J]. Electrochimica Acta, 2018, 53(5): 2095-2108.