-
氨基甲酸酯类农药(carbamate pesticides, CPs)是氨基甲酸的N-甲基取代酯类化合物,具有选择性强、高效、广谱、易分解等特点,且其原料易得、合成简单,可作为新型杀虫、杀螨、除草剂等农药,被广泛应用在农业、林业、牧业等领域[1-3]。然而,大多数氨基甲酸酯类农药在水中有较高溶解度,其生产和使用过程中易被排入水体环境中。据报道[4-11],我国生活污水、工业废水、畜禽养殖场废水等实际废水以及海洋、河流、湖泊等天然水环境中已经被检测出的氨基甲酸酯类农药多达30多种。已有研究[11]表明,在湖北省中部66份地表水样品有机农药残留量检测的结果中,有机农药残留检出率为9.09%,超标率为3.03%,检出甲萘威质量分数为1 110 μg·kg−1,远远超过国家安全标准。在水环境中已检出的氨基甲酸酯类农药中,部分农药的生态毒性较高,引发的水生态安全问题不容忽视[5, 9-10]。生物毒性实验数据显示,对水中鱼类、水蚤类和藻类来说,甲萘威等氨基甲酸酯类农药属于强毒或中等毒性化学物,如果未被有效处理就排入水体环境,将对水生生物构成极大威胁[9-10]。因此,针对水环境中甲萘威等氨基甲酸酯类农药的去除研究具有重要意义。
有机农药污染控制一直是水处理研究领域关注的热点和难点问题[12-14]。电化学氧化技术因为具有高效率、低污染和占地小等优点,通常被用于水中有机农药的去除[14-16]。在电化学去除和矿化水中有机农药方面,Ti/IrO2-RuO2、Ti/SnO2、Ti/Sb2O5、硼掺杂金刚石(BDD)、Gd-PO2等高活性阳极已经取得了较好的效果[17-22]。陈灿等[17]分别用Ti/IrO2-RuO2、Ti/SnO2、Ti/Sb2O5、石墨阳极处理氨基甲酸酯类农药废水,发现Ti/IrO2-RuO2阳极效果最好,在电流密度为20 mA·cm−2、pH为7~8、反应时间为4 h条件下,其化学需氧量(COD)去除率可达85.0%;邹徐[18]用BDD阳极降解水中浓度为8.5 μmol·L−1的敌草隆,在10 mA·cm−2的电流密度下,反应40 min后,敌草隆降解率高达97%;ÇELEBI等[19]用BDD阳极降解水中浓度为0.1 mmol·L−1的甲萘威,在300 mA电流下,反应14 min后,甲萘威几乎全部去除,反应2 h后,溶液总有机碳(TOC)去除率可达90.2%;SANTOS等[20]用Ti/RuO2阳极降解水中浓度为50 μmol·L−1的甲萘威,在30 mA·cm−2的电流密度下,反应2 h后,甲萘威降解率达到了96.4%。然而,Ti/IrO2-RuO2、Ti/SnO2、Ti/RuO2、Ti/Sb2O5等阳极使用寿命有限,石墨阳极容易被氧化成CO2而失活,BDD阳极制备成本较高[21-22]。因此,仍需要开发对水中有机农药去除率和矿化率较高、制备成本较低、稳定性较好的电化学阳极。
近年来,亚氧化钛(Ti4O7)电极材料具有较高的析氧电位(OEP),优良的导电性能、电化学活性和稳定性,可用于制备高活性电化学阳极[23-30]。WANG等[23]通过等离子喷涂技术制备了钛基亚氧化钛(Ti/Ti4O7)阳极,其OEP值(2.6 V,vs. SCE)与BDD阳极接近(2.3~2.7 V,vs. SCE),制备成本(42 568 元·m−2)比BDD阳极(105 000~153 000 元·m−2)低60%~70%。韩金名[26]用亚氧化钛修饰泡沫(TF/Ti4O7)阳极降解磺胺甲基嘧啶,在电流密度为10 mA·cm−2、初始pH为2.0的最佳条件下,反应8 h,磺胺甲基嘧啶和溶液TOC去除率分别为99.48%和48.04%。YOU等[27]利用Ti4O7阳极处理工业废水,废水中的COD和TOC的去除率分别为66%和57%。目前,使用Ti4O7阳极去除水中有机农药和氨基甲酸酯类农药的相关研究鲜见报道,且Ti4O7阳极电活性还有继续优化的空间。
本研究拟通过电化学氧化-自掺杂还原法制备亚氧化钛纳米管(Ti/Ti4O7-NTA)阳极,通过微观结构、电化学性能和稳定性分析,研究其结构和性能特点;以甲萘威为目标污染物,分析和比较Ti/Ti4O7-NTA、Ti/Ti4O7、Ti/Ti4O7-PbO2-Ce等阳极降解甲萘威时的甲萘威去除率和溶液TOC去除率,评估Ti/Ti4O7-NTA阳极电化学降解甲萘威活性;开展Ti/Ti4O7-NTA阳极电化学降解水中甲萘威实验,分析电流密度、甲萘威初始质量浓度、电解质种类、溶液初始pH等参数对甲萘威降解率的影响;分析最优参数条件下Ti/Ti4O7-NTA阳极电化学降解水中甲萘威时的电流效率和反应能耗,以期为Ti4O7阳极开发和应用以及电化学氧化技术处理有机农药废水相关研究提供参考。
亚氧化钛纳米管阳极对水中甲萘威的电化学降解
Electrochemical degradation of carbaryl in water over the Ti/Ti4O7-NTA anode
-
摘要: 为探究电化学阳极氧化技术降解水中甲萘威的效率和能耗,通过电化学氧化-自掺杂还原法制备了高活性亚氧化钛纳米管(Ti/Ti4O7-NTA)阳极,比较了其与Ti/Ti4O7、Ti/Ti4O7-PbO2-Ce阳极电化学降解甲萘威活性;考察了电流密度、甲萘威初始质量浓度、电解质种类、溶液初始pH等参数对甲萘威降解率的影响;分析了甲萘威电化学反应能耗和电流效率。结果表明:Ti/Ti4O7-NTA阳极电化学活性较高,电化学降解甲萘威效率和溶液总有机碳去除率可达96.1%和80.2%;在pH为3~11时,甲萘威降解率为88.8%~92.1%,降解率随电流密度增大而增大,随初始质量浓度增大而减小;甲萘威电化学反应能耗和电流效率分别为215.3 kWh和66.1%。由此可知,Ti/Ti4O7-NTA阳极应用于电化学氧化处理有机农药废水具有良好潜力。本研究成果可为电化学氧化技术处理有机农药废水提供参考。
-
关键词:
- Ti/Ti4O7-NTA阳极 /
- 甲萘威电化学氧化 /
- 降解率 /
- 反应能耗
Abstract: To explore the performance and energy consumption of electro-oxidation technology for carbaryl degradation in water, a highly active Ti/Ti4O7-NTA anode was synthesized via the electro-oxidation within self-doping reduction technology, and its reactivity for carbaryl electro-oxidation was analyzed and compared with the Ti/Ti4O7 and Ti/Ti4O7-PbO2-Ce anodes. The effects of influencing parameters including current density, initial carbaryl concentration, electrolyte type, and initial pH on the electro-degradation kinetics of carbaryl were investigated. The energy consumption and current efficiency of electro-oxidizing carbaryl over the Ti/Ti4O7-NTA anode were also highlighted. The results showed that Ti/Ti4O7-NTA anode had a high electrochemical activity for carbaryl electro-oxidation, and the carbaryl electro-degradation and TOC removal efficiencies reached 96.1% and 80.2%, respectively. At pH 3~11, the degradation efficiencies of carbaryl were 88.8%~92.1%, and they increased with current density increasing, and decreased with the increase of initial carbaryl concentration. The energy consumption and current efficiency of carbaryl electro-oxidation were 215.3 kWh and 66.1% in 40 minutes reaction, respectively. It can be concluded that the Ti/Ti4O7-NTA anode may have a satisfactory application potential for the treatment of organic pesticide wastewater. This study can provide a reference for the treatment of organic pesticide wastewater by electrochemical oxidation technology. -
表 1 Ti/Ti4O7-NTA阳极降解甲萘威的效率以及反应动力学常数
Table 1. Efficiency and kinetics of carbaryl electrochemical oxidation by the Ti/Ti4O7-NTA anode
因素 数值或物质 降解率/% 反应速率常数k/min−1 半衰期t1/2/min R2 电流密度 4 mA·cm−2 75.2±0.2 0.035±0.000 2 18 0.934 8 mA·cm−2 79.0±0.7 0.039±0.000 1 14 0.928 12 mA·cm−2 92.1±0.4 0.063±0.000 7 12 0.918 16 mA·cm−2 92.5±0.5 0.065±0.000 6 12 0.925 20 mA·cm−2 95.8±0.7 0.079±0.000 2 11 0.931 甲萘威初始质量浓度 5 mg·L−1 95.8±0.4 0.079±0.000 3 9 0.936 10 mg·L−1 92.1±0.4 0.063±0.000 7 12 0.918 20 mg·L−1 87.3±0.6 0.052±0.000 2 16 0.929 电解质 Na2SO4 92.1±0.4 0.063±0.000 7 12 0.918 NaNO3 81.3±0.3 0.042±0.000 2 22 0.989 NaCl 85.9±0.6 0.049±0.000 7 19 0.985 pH 3.0 88.8±0.9 0.055±0.000 8 19 0.96 7.0 92.1±0.4 0.063±0.000 7 12 0.918 11.0 91.7±0.5 0.062±0.000 4 17 0.955 -
[1] 郭姣艳, 孙艳波, 马向东, 等. 濮阳市蔬菜中有机磷和氨基甲酸酯类农药残留调查分析[J]. 中国卫生检验杂志, 2022, 32(4): 487-490. [2] 董恒涛, 姚劲挺, 郝红元, 等. 超高效液相色谱三重四极杆质谱联用法测定地表水中的氨基甲酸酯类农药残留[J]. 环境化学, 2018, 37(2): 367-370. [3] WEI J C, WEI B, YANG W, et al. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique[J]. Food and Chemical Toxicology, 2018, 119: 430-437. doi: 10.1016/j.fct.2017.12.019 [4] BORDBAR M, NGUYEN T, ARDUINI F, et al. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice[J]. Microchimica Acta, 2020, 187(11): 621. doi: 10.1007/s00604-020-04596-x [5] DE SIQUEIRA A, RODRIGUES K, GON ALVES-JUNIOR V, et al. Exhumation of Wistar rats experimentally exposed to the carbamate pesticides aldicarb and carbofuran: A pathological and toxicological study[J]. Experimental & Toxicologic Pathology, 2016, 68(6): 307-314. [6] 郭斌, 陈灿, 李士永, 等. Qu EChERS-柱后衍生高效液相色谱法测定蔬菜中6种氨基甲酸酯类农药及其代谢物[J]. 中国卫生检验杂志, 2022, 32(13): 1556-1559. [7] 孙晓静. 海水中氨基甲酸酯类农药的光降解研究[D]. 青岛: 中国海洋大学, 2015. [8] 太欧. 地下水中六种氨基甲酸酯类农药UPLC-MS/MS方法的建立与应用[D]. 北京: 中国地质大学(北京), 2019. [9] CHANDRAKAR C. Occurrence of carbaryl, DDT and deltamethrin residues in bovine milk in Chhattisgarh, India and risk assessment to human health[J]. Journal of Animal Research, 2020, 10(2): 178. [10] 燕娅娅, 刘峰, 徐飞. 一起克百威致急性中毒事件的调查分析[J]. 中国卫生检验杂志, 2022, 32(13): 1623-1625. [11] 李国强. 应城市农产品及其生长环境农药残留现状评估[J]. 化学分析计量, 2011, 20(2): 5. doi: 10.3969/j.issn.1008-6145.2011.02.022 [12] 姚梦东, 姚梦东, 徐雪婧, 等. 球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J]. 环境工程学报, 2021, 15(8): 2563-2575. doi: 10.12030/j.cjee.202103052 [13] WASEEM H. 活化过硫酸盐氧化降解水中农药的研究[D]. 广州: 华南理工大学, 2020. [14] 赵泽华, 张后虎, 许彬, 等. 三维电催化氧化技术处理草铵膦农药废水[J]. 环境工程学报, 2017, 11(1): 93-97. doi: 10.12030/j.cjee.201508162 [15] 张丽曼. 二氧化铅电极电催化降解农药废水的研究[D]. 天津: 河北工业大学, 2020. [16] 智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64. doi: 10.12030/j.cjee.201705098 [17] 陈灿, 秦岳军, 张燕. 电催化氧化技术处理氨基甲酸酯类农药废水[J]. 广州化工, 2014, 42(6): 58-60. doi: 10.3969/j.issn.1001-9677.2014.06.021 [18] 邹徐. BDD电极电化学氧化去除水中典型农药特性及机理研究[D]. 长沙: 湖南大学, 2018. [19] ÇELEBI M S, OTURAN N, ZAZOU H, et al. Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology[J]. Separation and Purification Technology, 2015, 156: 996-1002. doi: 10.1016/j.seppur.2015.07.025 [20] SANTOS T É S, SOLVA R S, CARLESI J C, et al. The influence of the synthesis method of Ti/RuO2 electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl[J]. Materials Chemistry and Physics, 2014, 148(1): 39-47. [21] YANG Y, XIA Y, WEI F, et al. Electrochemical oxidation of the pesticide nitenpyram using a Gd-PbO2 anode: Operation parameter optimization and degradation mechanism[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8): 2120-2128. [22] HAI H, XING X, LI S, et al. Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation[J]. Science of the Total Environment, 2020, 738: 139909. doi: 10.1016/j.scitotenv.2020.139909 [23] WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030 [24] ZHI D, ZHANG J, WANG J, et al. Electrochemical treatments of coking wastewater and coal gasifcation wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes[J]. Journal of Environmental Management, 2020, 265: 110571. doi: 10.1016/j.jenvman.2020.110571 [25] 智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2017, 38(5): 1858-1867. [26] 韩金名. NF/CN-TF/Ti4O7电化学体系对磺胺甲基嘧啶降解机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [27] YOU S, LIU B, GAO Y, et al. Monolithic porous magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater[J]. Electrochimica Acta, 2016, 214: 326-335. doi: 10.1016/j.electacta.2016.08.037 [28] LIN H, NIU J, LIANG S, et al. Development of macroporous magnéli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances[J]. Chemical Engineering Journal, 2018, 354: 1058-1067. doi: 10.1016/j.cej.2018.07.210 [29] ZHANG J, ZHOU Y, YAO B, et al. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique[J]. Journal of Hazardous Materials, 2021, 418: 126313. doi: 10.1016/j.jhazmat.2021.126313 [30] LIANG S, LIN H, YAN X, et al. Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics, products, and toxicity[J]. Chemical Engineering Journal, 2018, 332: 628-636. doi: 10.1016/j.cej.2017.09.109 [31] 谭志谋. 阳极氧化二氧化钛纳米管和纳米孔阵列的形成机理[D]. 杭州: 浙江大学, 2013. [32] 李洪义, 陈言慧, 郑雄领, 等. 二氧化钛纳米管的制备和应用[J]. 金属功能材料, 2022, 29(5): 487-490. doi: 10.13228/j.boyuan.issn1005-8192.20220116 [33] GENG P, SU J, CHRISTOS C, et al. Highly-ordered magneli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation[J]. Electrochimica Acta, 2015, 153: 316-324. doi: 10.1016/j.electacta.2014.11.178 [34] WANG C, NIU J, YIN L, et al. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production[J]. Chemical Engineering Journal, 2018, 346: 662-671. doi: 10.1016/j.cej.2018.03.159 [35] XU C, NIU J, XIE H, et al. Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode[J]. Journal of Hazardous Materials, 2021, 402: 123530. doi: 10.1016/j.jhazmat.2020.123530 [36] ZHI D, WANG J, ZHOU Y, et al. Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction[J]. Chemical Engineering Journal, 2020, 383: 123149. doi: 10.1016/j.cej.2019.123149 [37] YANG Y, HOFFMANN M. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environmental Science & Technology, 2016, 50(21): 11888-11894. [38] LI D, TANG J, ZHOU X, et al. Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode[J]. Chemosphere, 2016, 149: 49-56. doi: 10.1016/j.chemosphere.2016.01.078 [39] 张峰源. 高活性电极的制备及电化学氧化处理煤化工废水的研究[D]. 北京: 中国矿业大学(北京), 2019. [40] LIN H, NIU J, XU Y, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution[J]. Electrochimica Acta, 2013, 97: 167-174. doi: 10.1016/j.electacta.2013.03.019 [41] AI S, GAO M, ZHANG W, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines[J]. Talanta, 2004, 62: 445-450. doi: 10.1016/j.talanta.2003.08.019 [42] ZHOU C, WANG Y, CHEN J, et al. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, mechanism, toxicity and energy consumption[J]. Science of the Total Environment, 2019, 688: 75-82. doi: 10.1016/j.scitotenv.2019.06.197 [43] ZHI D, QIN J, ZHOU H, et al. Removal of tetracycline by electrochemical oxidation using a Ti/SnO2-Sb anode: Characterization, kinetics, and degradation pathway[J]. Journal of Applied Electrochemistry, 2017, 47(12): 1313-1322. doi: 10.1007/s10800-017-1125-7 [44] RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302. [45] FRONTISTIS Z, ANTONOPOULOU M, YAZIRDAGI M, et al. Boron-doped diamond electrooxidation of ethyl paraben: The effect of electrolyte on by-products distribution and mechanisms[J]. Journl of Environment. Management, 2017, 195: 148-156. [46] KLAMKLANG S, VERGNES H, SENOCQ F, et al. Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment[J]. Journal of Applied Electrochemistry, 2010, 40(5): 997-1004. doi: 10.1007/s10800-009-9968-1 [47] SCIALDONE O, GALIA A, GUARISCO C, et al. Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters[J]. Electrochimica Acta, 2018, 53(5): 2095-2108.