[1] 罗晓春, 杭鑫, 曹云, 等. 太湖富营养化条件下影响蓝藻水华的主导气象因子[J]. 湖泊科学, 2019, 31(5): 1248 − 1258. doi: 10.18307/2019.0512
[2] 张兰婷. 富营养化蓝藻水华发生的主要成因与机制研究综述[J]. 水利发展研究, 2019, 19(5): 28 − 33.卷期. doi: 10.13928/j.cnki.wrdr.2019.05.008
[3] AGUILERA A, HAAKONSSON S, MARTIN M V, et al. Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern[J]. Limnologica, 2018, 69: 103 − 114. doi: 10.1016/j.limno.2017.10.006
[4] NYAKAIRU G, NAGAWA C B, MBABAZI J. Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda[J]. Toxicon, 2010, 55(5): 939 − 946. doi: 10.1016/j.toxicon.2009.07.024
[5] SCHINDLER D W, HECKY R E, MCCULLOUGH G K. The rapid eutrophication of Lake Winnipeg: Greening under global change[J]. Journal of Great Lakes Research, 2012, 38: 6 − 13.
[6] ZAMYADI A, MACLEOD S L, FAN Y, et al. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge[J]. Water Research, 2012, 46(5): 1511 − 1523. doi: 10.1016/j.watres.2011.11.012
[7] 姜锦林, 周军英, 刘仁彬, 等. 太湖重污染湖区和水源地水质概况及藻毒素污染环境风险[J]. 生态毒理学报, 2019, 14(3): 60 − 71.
[8] 梁钊, 李子富, 周晓琴, 等. 氮掺杂二氧化钛光催化氧化降解污水中四环素[J]. 环境工程, 2019, 37(3): 92 − 97. doi: 10.13205/j.hjgc.201903017
[9] KAZUHITO H, HIROSHI I, AKIRA F, et al. TiO2 photocatalysis: A historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44(12): 8269 − 8285.
[10] 李湄琳. 二氧化钛作为光催化剂的原理概述[J]. 生物化工, 2017(6): 94 − 96. doi: 10.3969/j.issn.2096-0387.2017.06.029
[11] PINHO L X, AZEVEDO J, BRITO A, et al. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin[J]. Chemical Eegineering Journal, 2015, 268: 144 − 152. doi: 10.1016/j.cej.2014.12.111
[12] MIRANDA-BAEZA A, MARISCAL-LÓPEZ M D L A, LÓPEZ-ELÍAS J A, et al. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture[J]. Aquaculture Research, 2017, 48(9): 4725 − 4734. doi: 10.1111/are.13294
[13] MOHAMED Z A. Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants - examples from the Nile River, Egypt[J]. Water SA, 2016, 42(1): 161 − 165. doi: 10.4314/wsa.v42i1.16
[14] World Health Organization(2008)Guidelines for drinking-water quality: incorporating the first and second addenda, [M] 3rd, vol. 1, World Health Organization, Geneva.
[15] 汪国忠, 牟季美. 纳米TiO2的制备和性能[J]. 材料研究学报, 1997, 11(5): 527 − 530.
[16] 金岩. 载体混凝耦合可见光催化氧化去除饮用水中有害蓝藻及其代谢物[D]. 济南: 山东大学, 2019.
[17] 孙炯明. 颤藻细胞及其代谢产物在聚合氯化铝铁混凝工艺中的行为特征[D]. 济南: 山东大学, 2018.
[18] SUN J, XU H, PEI H, et al. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment[J]. Water Research, 2018, 142: 405 − 414. doi: 10.1016/j.watres.2018.06.020
[19] LI L, SHAO C, LIN T, et al. Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa[J]. Environmental Science & Technology, 2014, 48(5): 2885 − 2892.
[20] QU F S, LIANG H, HE J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling[J]. Water Research, 2012, 46(9): 2881 − 2890. doi: 10.1016/j.watres.2012.02.045
[21] JIN Y, ZHANG S S, XU H Z, et al. Application of N-TiO2 for visible-light photocatalytic degradation of Cylindrospermopsis raciborskii —More difficult than that for photodegradation of Microcystis aeruginosa ?[J]. Environmental Pollution, 2019, 245: 642 − 650. doi: 10.1016/j.envpol.2018.11.056