-
由于人类活动的影响,大量工业废水、生活污水以及农田径流中的氮、磷营养物质排入湖泊、水库、河口和海湾等缓流水体,引起了不同程度的水体富营养化,进而导致了蓝藻水华的暴发[1-3]。漂浮在水面的大量蓝藻会遮蔽阳光,使水体动植物因光合作用受阻碍而死亡,导致水体透明度降低,溶解氧减少,产生恶臭气味,感官性状急速下降。而死去的动植物腐败后释放出的大量氮、磷营养物质会进一步被蓝藻利用,使其大量繁殖,造成恶性循环[4-5]。此外,蓝藻的生长代谢过程中所释放的多种蓝藻毒素在极低剂量下就会对人体的肝脏、肾脏等多处器官的健康产生不利影响,情况严重的会引发癌症,导致死亡[6-7]。因此,水体中尤其是饮用水水源地中的有害蓝藻及其释放的蓝藻毒素会对环境和人类健康造成严重威胁,是水处理工艺中需要解决的关键问题之一。
光催化氧化技术是一种利用光辐照激发半导体材料,使其催化产生具有极强氧化能力的活性氧自由基,从而有效降解微生物与有机物等污染物的高级氧化技术[8]。其中,UV/TiO2高级氧化技术因其自然环境无毒、化学性能稳定、使用成本低廉和光催化活性高的优点,得到了广泛的研究与应用。UV/TiO2高级氧化技术在蓝藻治理方面的应用同样具有广阔的前景[9-10],例如PINHO et al[11]的研究表明在紫外光照下,50 mg/L TiO2能在15~20 min内快速灭活水体中的铜绿微囊藻(Microcystis aeruginosa)并有效降解其释放的微囊藻毒素(Microcystins,MCs),证明了UV/TiO2在蓝藻治理中应用的可行性。然而,目前有关UV/TiO2降解蓝藻的研究大多以铜绿微囊藻为研究对象。
近年来,另一种常见的产毒蓝藻——颤藻(Oscillatoria sp.)在水源地的频繁暴发使其受到广泛关注。与在水体中均匀分散的单细胞铜绿微囊藻不同,颤藻为丝状蓝藻,且在水体中易发生团聚现象,进而形成颤藻藻垫,对颤藻细胞具有更强的保护作用[12-13]。此外,颤藻分泌的蓝藻毒素更为复杂,不仅分泌微囊藻毒素,还会产生柱孢藻毒素(Cylindrospermopsin,CYN)以及异嗅物质[14]。由于与铜绿微囊藻的生理性状以及行为特征明显不同,颤藻在UV/TiO2降解过程中的变化规律也可能有很大差别。然而,作为一种急需针对治理的水华蓝藻,有关光催化氧化技术尤其是UV/TiO2对颤藻及其分泌毒素降解效果与机理的研究尚未有报道。
因此,本研究主要针对UV/TiO2降解过程中颤藻细胞的裂解机制、微囊藻毒素与柱孢藻毒素的降解效率以及胞外有机物的变化规律进行研究,并与同等条件下铜绿微囊藻的降解过程进行比较。该研究可以为治理水体中不同生理特征的有害蓝藻提供经验技术,也可以为光催化氧化技术处理团聚型蓝藻提供理论参考。
UV/TiO2光催化氧化技术降解颤藻及其毒素的研究
Degradation of Oscillatoria sp. and its toxins by UV/TiO2
-
摘要: UV/TiO2为非选择性高级氧化技术,对各类蓝藻均有降解能力,但其处理效果受蓝藻生理生化特性的影响。自然水体中往往存在多种有害蓝藻优势种,然而目前UV/TiO2降解有害蓝藻的研究大多以铜绿微囊藻(Microcystis aeruginosa)为对象,对其他具有不同生理生化特性的蓝藻优势种的处理效果与机制研究仍鲜有报道。近年来,另一种常见的产毒蓝藻——颤藻(Oscillatoria sp.)在水源地的频繁暴发使其受到广泛关注并急需找到具有针对性的治理方法。为探索UV/TiO2高级氧化技术治理水体中颤藻的可行性,针对UV/TiO2降解过程中颤藻细胞的裂解机制、微囊藻毒素与柱孢藻毒素的降解效率以及胞外有机物的变化规律进行研究,并与同等条件下铜绿微囊藻的降解过程进行比较。Abstract: UV/TiO2 is a non-selective advanced oxidation technology, which can degrade all kinds of cyanobacteria. However, its treatment effect is affected by the physiological and biochemical characteristics of the cyanobacteria. There are many dominant species of harmful cyanobacteria in natural water. The present research on the degradation of harmful cyanobacteria by UV/TiO2 is mostly focused on Microcystis aeruginosa, and there are still few reports on the treatment effect and mechanism of other dominant species of cyanobacteria with different physiological and biochemical characteristics. In recent years, the frequent outbreak of Oscillatoria sp., another common poisonous cyanobacteria, has attracted widespread attention and urgently needs to find a targeted treatment method. To explore the feasibility of UV/TiO2 advanced oxidation technology to treat Oscillatoria in water, this paper focuses on the lysis pattern of Chlamydomonas cells during UV/TiO2 degradation, the degradation efficiency of microcystins and columnaris toxins, and the types and contents of extracellular organic matter. The changes of Microcystis aeruginosa under the same conditions are also analyzed.
-
Key words:
- UV/TiO2 /
- photocatalytic oxidation /
- Oscillatoria sp. /
- Microcystis aeruginosa /
- cyanotoxins
-
-
[1] 罗晓春, 杭鑫, 曹云, 等. 太湖富营养化条件下影响蓝藻水华的主导气象因子[J]. 湖泊科学, 2019, 31(5): 1248 − 1258. doi: 10.18307/2019.0512 [2] 张兰婷. 富营养化蓝藻水华发生的主要成因与机制研究综述[J]. 水利发展研究, 2019, 19(5): 28 − 33.卷期. doi: 10.13928/j.cnki.wrdr.2019.05.008 [3] AGUILERA A, HAAKONSSON S, MARTIN M V, et al. Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern[J]. Limnologica, 2018, 69: 103 − 114. doi: 10.1016/j.limno.2017.10.006 [4] NYAKAIRU G, NAGAWA C B, MBABAZI J. Assessment of cyanobacteria toxins in freshwater fish: A case study of Murchison Bay (Lake Victoria) and Lake Mburo, Uganda[J]. Toxicon, 2010, 55(5): 939 − 946. doi: 10.1016/j.toxicon.2009.07.024 [5] SCHINDLER D W, HECKY R E, MCCULLOUGH G K. The rapid eutrophication of Lake Winnipeg: Greening under global change[J]. Journal of Great Lakes Research, 2012, 38: 6 − 13. [6] ZAMYADI A, MACLEOD S L, FAN Y, et al. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge[J]. Water Research, 2012, 46(5): 1511 − 1523. doi: 10.1016/j.watres.2011.11.012 [7] 姜锦林, 周军英, 刘仁彬, 等. 太湖重污染湖区和水源地水质概况及藻毒素污染环境风险[J]. 生态毒理学报, 2019, 14(3): 60 − 71. [8] 梁钊, 李子富, 周晓琴, 等. 氮掺杂二氧化钛光催化氧化降解污水中四环素[J]. 环境工程, 2019, 37(3): 92 − 97. doi: 10.13205/j.hjgc.201903017 [9] KAZUHITO H, HIROSHI I, AKIRA F, et al. TiO2 photocatalysis: A historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44(12): 8269 − 8285. [10] 李湄琳. 二氧化钛作为光催化剂的原理概述[J]. 生物化工, 2017(6): 94 − 96. doi: 10.3969/j.issn.2096-0387.2017.06.029 [11] PINHO L X, AZEVEDO J, BRITO A, et al. Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin[J]. Chemical Eegineering Journal, 2015, 268: 144 − 152. doi: 10.1016/j.cej.2014.12.111 [12] MIRANDA-BAEZA A, MARISCAL-LÓPEZ M D L A, LÓPEZ-ELÍAS J A, et al. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture[J]. Aquaculture Research, 2017, 48(9): 4725 − 4734. doi: 10.1111/are.13294 [13] MOHAMED Z A. Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants - examples from the Nile River, Egypt[J]. Water SA, 2016, 42(1): 161 − 165. doi: 10.4314/wsa.v42i1.16 [14] World Health Organization(2008)Guidelines for drinking-water quality: incorporating the first and second addenda, [M] 3rd, vol. 1, World Health Organization, Geneva. [15] 汪国忠, 牟季美. 纳米TiO2的制备和性能[J]. 材料研究学报, 1997, 11(5): 527 − 530. [16] 金岩. 载体混凝耦合可见光催化氧化去除饮用水中有害蓝藻及其代谢物[D]. 济南: 山东大学, 2019. [17] 孙炯明. 颤藻细胞及其代谢产物在聚合氯化铝铁混凝工艺中的行为特征[D]. 济南: 山东大学, 2018. [18] SUN J, XU H, PEI H, et al. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment[J]. Water Research, 2018, 142: 405 − 414. doi: 10.1016/j.watres.2018.06.020 [19] LI L, SHAO C, LIN T, et al. Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa[J]. Environmental Science & Technology, 2014, 48(5): 2885 − 2892. [20] QU F S, LIANG H, HE J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling[J]. Water Research, 2012, 46(9): 2881 − 2890. doi: 10.1016/j.watres.2012.02.045 [21] JIN Y, ZHANG S S, XU H Z, et al. Application of N-TiO2 for visible-light photocatalytic degradation of Cylindrospermopsis raciborskii —More difficult than that for photodegradation of Microcystis aeruginosa ?[J]. Environmental Pollution, 2019, 245: 642 − 650. doi: 10.1016/j.envpol.2018.11.056