[1] UNESCO. The United Nations World Water Development Report 2015 - Water for a Sustainable World - Chapter 7: Food and Agriculture [R]. Paris: UNESCO, 2015.
[2] KOG Y C. Water Reclamation and Reuse in Singapore[J]. Journal of Environmental Engineering, 2020, 146(4): 03120001. doi: 10.1061/(ASCE)EE.1943-7870.0001675
[3] 中华人民共和国住房和城乡建设部. 2020年城市建设统计年鉴 [Z].https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/index.html. 2021.
[4] WANG X X, WU Y H, ZHANG T Y, et al. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation[J]. Water Research, 2016, 94: 215-224. doi: 10.1016/j.watres.2016.02.062
[5] COMSTOCK S E H, BOYER T H, GRAF K C. Treatment of nanofiltration and reverse osmosis concentrates: Comparison of precipitative softening, coagulation, and anion exchange[J]. Water Research, 2011, 45(16): 4855-4865. doi: 10.1016/j.watres.2011.06.035
[6] DIALYNAS E, MANTZAVINOS D, DIAMADOPOULOS E. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater[J]. Water Research, 2008, 42(18): 4603-4608. doi: 10.1016/j.watres.2008.08.008
[7] MOHSENI A, KUBE M, FAN L, et al. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance[J]. Chemosphere, 2021, 276: 130028. doi: 10.1016/j.chemosphere.2021.130028
[8] MOHSENI A, FAN L H, RODDICK F A. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate[J]. Chemosphere, 2021, 285: 131487. doi: 10.1016/j.chemosphere.2021.131487
[9] DO J M, JO S W, YEO H T, et al. Biological treatment of reverse osmosis concentrate by microalgae cultivation and utilization of the resulting algal biomass[J]. Journal of Water Process Engineering, 2021: 102157.
[10] MOHSENI A, KUBE M, FAN L H, et al. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate[J]. Environmental Science and Pollution Research, 2020, 27(21): 26905-26914. doi: 10.1007/s11356-020-09103-6
[11] AROLA K, VAN DER BRUGGEN B, MANTTARI M, et al. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(22): 2049-2116. doi: 10.1080/10643389.2019.1594519
[12] PEREZ-GONZALEZ A, URTIAGA A M, IBANEZ R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates[J]. Water Research, 2012, 46(2): 267-283. doi: 10.1016/j.watres.2011.10.046
[13] ZHOU M H, TAN Q Q, WANG Q, et al. Degradation of organics in reverse osmosis concentrate by electro-Fenton process[J]. Journal of Hazardous Materials, 2012, 215: 287-293.
[14] PEREZ G, FERNANDEZ-ALBA A R, URTIAGA A M, et al. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment[J]. Water Research, 2010, 44(9): 2763-2772. doi: 10.1016/j.watres.2010.02.017
[15] BEUCKELS A, SMOLDERS E, MUYLAERT K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment[J]. Water Research, 2015, 77: 98-106. doi: 10.1016/j.watres.2015.03.018
[16] KONG Q X, LI L, MARTINEZ B, et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production[J]. Applied Biochemistry and Biotechnology, 2010, 160(1): 9-18. doi: 10.1007/s12010-009-8670-4
[17] GONCALVES A L, PIRES J C M, SIMOES M. A review on the use of microalgal consortia for wastewater treatment[J]. Algal Research-Biomass Biofuels and Bioproducts, 2017, 24: 403-415.
[18] ZHANG C, ZHANG W N, HUANG Y X, et al. Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors[J]. Environmental Science and Pollution Research, 2017, 24(7): 6746-6756. doi: 10.1007/s11356-017-8402-1
[19] BADRUZZAMAN M, OPPENHEIMER J, ADHAM S, et al. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes[J]. Journal of Membrane Science, 2009, 326(2): 392-399. doi: 10.1016/j.memsci.2008.10.018
[20] ZHOU T, LIM T-T, CHIN S-S, et al. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: Feasibility test of advanced oxidation processes with/without pretreatment[J]. Chemical Engineering Journal, 2011, 166(3): 932-939. doi: 10.1016/j.cej.2010.11.078
[21] LEE L Y, NG H Y, ONG S L, et al. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery[J]. Water Research, 2009, 43(16): 3948-3955. doi: 10.1016/j.watres.2009.06.016
[22] DENG H J S O T T E. Ozonation mechanism of carbamazepine and ketoprofen in RO concentrate from municipal wastewater treatment: Kinetic regimes, removal efficiency and matrix effect[J]. Science of the Total Environment, 2020, 717: 137150. doi: 10.1016/j.scitotenv.2020.137150
[23] FRICKE W, PETERS W S. The biophysics of leaf growth in salt-stressed barley. A study at the cell level[J]. Plant Physiology, 2002, 129(1): 374-388. doi: 10.1104/pp.001164
[24] PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae: A positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172. doi: 10.1016/j.biortech.2011.08.030
[25] MAO Y L, XIONG R W, GAO X F, et al. Analysis of the Status and Improvement of Microalgal Phosphorus Removal from Municipal Wastewater[J]. Processes, 2021, 9(9): 1486. doi: 10.3390/pr9091486
[26] HUANG N, XU Z B, WANG W L, et al. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal[J]. Chemosphere, 2022, 291(3): 133027.
[27] BRADFORD-HARTKE Z, LANT P, LESLIE G. Phosphorus recovery from centralised municipal water recycling plants[J]. Chemical Engineering Research & Design, 2012, 90(1A): 78-85.
[28] CHOI H J, LEE S M. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater[J]. Bioprocess and Biosystems Engineering, 2015, 38(4): 761-766. doi: 10.1007/s00449-014-1317-z
[29] JACOB-LOPES E, SCOPARO C H G, LACERDA L M C F, et al. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors[J]. Chemical Engineering and Processing-Process Intensification, 2009, 48(1): 306-310. doi: 10.1016/j.cep.2008.04.007
[30] MAHARANI D K, ARDI A, SYAHRIN A A, et al. The effect of photoperiod on lipid production of mixed culture arthrospira maxima setchell et gardner and microalgae consortium of glagah isolate[J]. 6th International Conference on Biological Science (Icbs 2019) - Biodiversity as a Cornerstone for Embracing Future Humanity, 2020, 2260: 080002.
[31] CHIA S R, ONG H C, CHEW K W, et al. Sustainable approaches for algae utilisation in bioenergy production[J]. Renewable Energy, 2018, 129: 838-852. doi: 10.1016/j.renene.2017.04.001
[32] WACKER A, PIEPHO M, HARWOOD J L, et al. Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species[J]. Frontiers in Plant Science, 2016, 7: 264.
[33] CHEIRSILP B, TORPEE S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 2012, 110: 510-516. doi: 10.1016/j.biortech.2012.01.125
[34] GEORGE B, PANCHA I, DESAI C, et al. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-A potential strain for bio-fuel production[J]. Bioresource Technology, 2014, 171: 367-374. doi: 10.1016/j.biortech.2014.08.086
[35] DIFUSA A, TALUKDAR J, KALITA M C, et al. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species[J]. Biofuels-Uk, 2015, 6(1-2): 37-44. doi: 10.1080/17597269.2015.1045274
[36] NZAYISENGA J C, FARGE X, GROLL S L, et al. Effects of light intensity on growth and lipid production in microalgae grown in wastewater[J]. Biotechnology for Biofuels, 2020, 13: 4. doi: 10.1186/s13068-019-1646-x
[37] PRIBYL P, CEPAK V, ZACHLEDER V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris[J]. Applied Microbiology and Biotechnology, 2012, 94(2): 549-561. doi: 10.1007/s00253-012-3915-5
[38] WHITTON R, OMETTO F, PIDOU M, et al. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment[J]. Environmental Technology Reviews, 2015, 4(1): 1-16. doi: 10.1080/21622515.2015.1018340
[39] GEIDER R J, LA ROCHE J. Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis[J]. European Journal of Phycology, 2002, 37(1): 1-17. doi: 10.1017/S0967026201003456
[40] RASDI N W, QIN J G. Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea[J]. Journal of Applied Phycology, 2015, 27(6): 2221-2230. doi: 10.1007/s10811-014-0495-z
[41] LI Y C, CHEN Y F, CHEN P, et al. Characterization of a microalga Chlorella sp well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production[J]. Bioresource Technology, 2011, 102(8): 5138-5144. doi: 10.1016/j.biortech.2011.01.091
[42] ZHAO Y, YAN H, ZHOU J, et al. Bio-precipitation of calcium and magnesium ions through extracellular and intracellular process induced by Bacillus Licheniformis SRB2[J]. Minerals, 2019, 9(9): 526. doi: 10.3390/min9090526