-
水资源危机推动了城市污水回收利用技术的研究与应用 [1]。2019年,新加坡40%的用水需求可由再生水解决[2]。但我国2020年的城市污水的再生水利用率仅为23.7%,这表明我国城市污水的回收利用存在巨大潜力[3]。反渗透 (reverse osmosis,RO) 技术具有污染物去除效率高、出水水质稳定、易操作等优点,在城市污水资源化中发挥着重要作用[4]。然而,反渗透工艺产生的浓水 (reverse osmosis concentrate,ROC) 是目前限制RO技术广泛应用的主要难点[5]。ROC约为进水的25%~50%,可生化性差。ROC中氮 (总氮为23~62 mg·L−1) 、磷 (总磷为0.4~20 mg·L−1) 浓度比进水更高[6],而总溶解性固体 (total dissolved solids,TDS) (质量浓度为1 129~5 560 mg·L−1) 、Ca2+ (250~400 mg·L−1) 、Mg2+ (70~250 mg·L−1) 等质量浓度也非常高,易导致水垢产生[4, 7-10]。
高级氧化工艺 (advanced oxidation processes,AOPs) 已被广泛用于处理城市污水ROC中难降解有机物和新型污染物[11]。投加3~10 mg·L−1的臭氧进行30 min的催化氧化后,ROC中有机物的可生化性可提高1.8~3.5倍[12]。芬顿法和光催化均可去除ROC中约50%的有机物[6]。电氧化法可去除ROC中约62%的有机物[13]。ROC中4种新兴污染物 (咖啡因、4-乙酰氨基安替比林、萘普生、吉非罗齐) 在电氧化2 h后,去除率均达到了92%[14]。然而, AOPs对城市污水ROC中氮 (以NO3−为主)、磷 (以PO43−为主) 及硬度离子 (Ca2+、Mg2+) 的去除效率低。微藻为同时去除废水中的总氮 (total nitrogen,TN) 、总磷 (total phosphorus,TP) 提供了方向[15]。微藻为光能自养型生物,无需有机物作为碳源,可在较广的氮 (TN为5~900 mg·L−1) 、磷 (TP为0.1~200 mg·L−1) 浓度范围内生长,并有效去除城市污水ROC中的氮和磷。在微藻生长过程中,pH会升高,并通过生成钙镁沉淀物达到降低硬度的作用[16]。增殖的微藻也可用于生产生物能源、食品、动物饲料和药品[17]。
目前,已有研究者将微藻应用于城市污水ROC处理中。MOHSENI等[10]选取Chlorella vulgaris和Nannochloropsis salina处理城市污水ROC,2种微藻在48 h内均能有效去除50%的TN和80%的TP。WANG等[4]对比了Chlorella sp. ZTY4和Scenedesmus sp. LX1对城市污水ROC的处理效果,2种微藻对水中的TN、TP去除率均达到89%和92%以上。DO等[9] 利用Chlorella sorokiniana KNUA071处理城市污水ROC,其TN和TP去除率分别为91.9%和97%。然而,微藻对ROC的处理机理及其应用条件优化的研究尚不足。TDS是ROC的重要成分,一般由无机盐 (如氯化物、钙、镁、钾、钠、碳酸氢盐、硫酸盐) 和溶解在水中的有机物组成[18],质量浓度为1.13~5.56 g·L−1[12],典型值为1.13~3.50 g·L−1[4-5, 19-22]。TDS主要是通过渗透势对微藻产生影响,过高的外部无机离子浓度会破坏藻细胞与其周围介质之间的渗透平衡,从而导致细胞失水、产生膨胀压力,使得细胞膜被破坏[23]。所以,在高TDS (5.00~15.00 g·L−1) 的ROC中,淡水微藻的生长速率和污染物去除率会随着TDS的质量浓度升高而降低[8]。此外,微藻的生长速度也受到其他环境因素的影响,如光强、光暗时间比、氮磷质量比、温度等。尤其是光自养微藻,光强和光暗时间比是决定其生长速度的主要因素[24]。氮磷质量比对微藻生长也有很大影响[25]。
选用一种单细胞绿色北方藻种 (Scenedesmus sp. FACHB-1574) 处理城市污水ROC,探究不同TDS、光暗时间比、光强和氮磷质量比等条件下,微藻对污染物的去除效果及自身生长状况,并探究由微藻生长引起的pH升高对Ca2+、Mg2+的去除影响,进而对微藻处理ROC过程中生物质积累及对污染物的去除条件进行优化,以期为微藻处理城市污水的研究提供参考。
微藻处理城市污水反渗透浓水的条件优化
Optimization of treatment conditions of reverse osmosis concentrate d wastewater from municipal sewage by microalgae
-
摘要: 城市污水回用是缓解水资源危机的有效措施。反渗透工艺是生产优质再生水的重要方法,但在实际应用过程中,25%~50%的城市污水会转化成反渗透浓水 (ROC) 。ROC的总氮 (TN) 、总磷 (TP) 和硬度离子 (Ca2+、Mg2+) 质量浓度等指标较高。利用微藻去除氮、磷和Ca2+、Mg2+是城市污水ROC处理的有效途径之一,且可实现资源回收,但目前对其应用条件的优化研究仍较少。利用微藻Scenedesmus sp. FACHB-1574处理城市污水ROC,在不同总溶解性固体 (TDS) 质量浓度 (1.35 g·L−1和2.70 g·L−1) 、光暗时间比 (12 h/12 h、16 h/8 h、20 h/4 h、24 h/0 h) 、光强 (25 μmol·m−2·s−1、50 μmol·m−2·s−1、100 μmol·m−2·s−1) 和氮磷质量比 (107:1、14:1、7:1) 的条件下,研究了微藻对污水的处理效果及其生长状况。结果表明,Scenedesmus sp. FACHB-1574可适应城市污水ROC中TDS质量浓度为2.70 g·L−1的条件;对TN的去除速率随光照时间和光强的增加而增大;氮磷质量比为14:1时微藻对TN的去除速率及微藻生物量等性能均得以强化。在最优处理条件下 (光暗时间比20 h/4 h,光强100 μmol·m−2·s−1,氮磷质量比14:1) 处理10 d后,微藻对城市污水ROC中TN和TP去除率分别为92.83%和99.68%,藻密度、质量浓度 (干重) 、脂质含量分别为23.62×106 cells·mL−1 、1.10 g·L−1、34.55%。随着微藻的生长,在无CO2的条件下,废水的pH值从7.5升高到10.7,并可去除52.7%的Ca2+和33.9%的Mg2+。本研究可为微藻在城市污水处理及资源化工艺中的应用提供参考。Abstract: The reuse of municipal wastewater is an effective measure to solve the shortage of water resources. The reverse osmosis (RO) process has the characteristics of being efficient and easy to operate, which is an important method to produce high-quality reclaimed water. However, reverse osmosis concentrate (ROC) will be produced during the RO treatment process, which accounts for 25%~50% of the municipal wastewater treated. ROC contains high concentrations of total nitrogen (TN), total phosphorus (TP) and hard ions (Ca2+, Mg2+). Microalgae can provide an effective way to simultaneously remove nitrogen, phosphorus, Ca2+ and Mg2+ from water, and can achieve resource recovery at the same time. However, there are still few studies on the condition optimization of municipal wastewater ROC treatment. In this study, Scenedesmus sp. FACHB-1574 was used to treat municipal wastewater ROC. The treatment efficiency and growth status of microalgae were studied under different total dissolved solid (TDS) concentrations (2.70 g·L−1 and 1.35 g·L−1), light/dark time ratios (12 h/12 h, 16 h/8 h, 20 h/4 h, 24 h/0 h), light intensities (25 μmol·m−2·s−1, 50 μmol·m−2·s−1, 100 μmol·m−2·s−1) and nitrogen/phosphorus mass ratios (107:1, 14:1, 7:1). The results showed that Scenedesmus sp. FACHB-1574 could adapt to the condition of 2.70 g·L−1 TDS in the investigated municipal wastewater ROC. The removal efficiency of TN increased with the increase of lighting intensity and time. Increasing the phosphorus content of ROC to achieve a nitrogen/phosphorus mass ratio of 14:1 could improve the TN removal efficiency and the biomass of microalgae. After microalgae treatment for 10 days under the optimal conditions (light/dark time ratio 20 h/4 h, light intensity 100 μmol·m−2·s−1, nitrogen/phosphorus mass ratio 14:1), the TN and TP removal efficiencies were 92.83% and 99.68%, respectively. The algal density, dry weight and lipid content were 23.62×106 cells·mL−1, 1.10 g·L−1 and 34.55%, respectively. During the growth of microalgae without CO2 addition, the pH value of wastewater increased from 7.5 to 10.7, and 52.7% of Ca2+ and 33.9% of Mg2+ were removed. This study can provide reference for the application of microalgae in municipal wastewater treatment and recovery.
-
表 1 不同TDS质量浓度、光暗时间比、光强和氮磷质量比条件下TN、TP去除率和藻密度数据的分析
Table 1. Analysis of TN and TP removal efficiencies and algal density under different total dissolved solids (TDS), light/dark time ratios, light intensities and nitrogen/phosphorus mass ratios
影响因素 组别 TN去除率p值a TP去除率p值a 藻密度p值a TDS质量浓度 1.35 g·L−1和2.70 g·L−1 * p>0.05 p>0.05 光暗时间比 12 h/12 h和16 h/8 h ** p>0.05 ** 12 h/12 h和20 h/4 h ** p>0.05 ** 12 h/12 h和24 h/0 h ** ** ** 16 h/8 h和20 h/4 h ** p>0.05 ** 16 h/8 h和24 h/0 h ** ** ** 20 h/4 h和24 h/0 h ** p>0.05 p>0.05 光强 25 μmol·m−2·s−1和50 μmol·m−2·s−1 ** p>0.05 ** 25 μmol·m−2·s−1和100 μmol·m−2·s−1 ** p>0.05 ** 50 μmol·m−2·s−1和100 μmol·m−2·s−1 * p>0.05 ** 氮磷质量比 107:1和14:1 * p>0.05 * 107:1和7:1 * p>0.05 * 14:1和7:1 p>0.05 p>0.05 p>0.05 注:a p<0.05用*表示,代表显著差异;p<0.01用**表示,代表极显著差异;p>0.05,代表不显著。 表 2 不同城市反渗透浓水水质特征及微藻处理效果
Table 2. Water quality characteristics and microalgae treatment effect of reverse osmosis concentrated water in different cities
文献 光照强度/
(μmol·m−2·s−1)光暗比/
(h/h)处理
时间/d进水TDS/
(mg·L−1)进水TN/
(mg·L−1)进水TP/
(mg·L−1)藻种 TN去
除率TP去
除率微藻质量浓度
(干重) /(g·L−1)微藻脂
质含量[7] 180 18/6 10 4 700±300 37±1.6 9.8±0.4 Chlorella vulgaris (CS-41) 85% >90% 3.4 ∕ [9] 114 16/8 8 ∕ 58.49 4.5 Desmodesmus sp. KNUA024 53.5% 91.9% 0.64 (27.11±0.95)% [9] 114 16/8 8 ∕ 58.49 4.5 Chlorella sorokiniana KNUA071 96.9% >97% 0.93 (13.31±1.54)% [10] 180 16/8 10 5 500±300 43.2±2.2 13.1±0.4 Chlorella vulgaris 78.7% 74.1% 3.20 ∕ [10] 180 16/8 10 5 500±300 43.2±2.2 13.1±0.4 Nannochlorop-sis salina 85% 85% 2.99 ∕ [4] 55~60 14/10 16 3 630±180 23.4±0.3 7.73±0.05 Chlorella sp. ZTY4 89.7% 92.7% 0.36 22.3% [4] 55~60 14/10 16 3 630±180 23.4±0.3 7.73±0.05 Scenedesmus sp. LX1 89.8% 92.4% 0.35 19.2% [4] 55~60 14/10 16 3 410±100 40.6±0.6 1.06±0.01 Chlorella sp.ZTY4 42.4% 84.2% 0.27 30.6% [4] 55~60 14/10 16 3 410±100 40.6±0.6 1.06±0.01 Chlorella sp. ZTY4 38% 81.6% 0.30 26.4% 本文 100 20/4 10 2 700±38 47±0.81 3.40±0.02 Scenedesmus sp. FACHB-1574 92.83% 99.68% 1.10 34.55% -
[1] UNESCO. The United Nations World Water Development Report 2015 - Water for a Sustainable World - Chapter 7: Food and Agriculture [R]. Paris: UNESCO, 2015. [2] KOG Y C. Water Reclamation and Reuse in Singapore[J]. Journal of Environmental Engineering, 2020, 146(4): 03120001. doi: 10.1061/(ASCE)EE.1943-7870.0001675 [3] 中华人民共和国住房和城乡建设部. 2020年城市建设统计年鉴 [Z].https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/index.html. 2021. [4] WANG X X, WU Y H, ZHANG T Y, et al. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation[J]. Water Research, 2016, 94: 215-224. doi: 10.1016/j.watres.2016.02.062 [5] COMSTOCK S E H, BOYER T H, GRAF K C. Treatment of nanofiltration and reverse osmosis concentrates: Comparison of precipitative softening, coagulation, and anion exchange[J]. Water Research, 2011, 45(16): 4855-4865. doi: 10.1016/j.watres.2011.06.035 [6] DIALYNAS E, MANTZAVINOS D, DIAMADOPOULOS E. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater[J]. Water Research, 2008, 42(18): 4603-4608. doi: 10.1016/j.watres.2008.08.008 [7] MOHSENI A, KUBE M, FAN L, et al. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance[J]. Chemosphere, 2021, 276: 130028. doi: 10.1016/j.chemosphere.2021.130028 [8] MOHSENI A, FAN L H, RODDICK F A. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate[J]. Chemosphere, 2021, 285: 131487. doi: 10.1016/j.chemosphere.2021.131487 [9] DO J M, JO S W, YEO H T, et al. Biological treatment of reverse osmosis concentrate by microalgae cultivation and utilization of the resulting algal biomass[J]. Journal of Water Process Engineering, 2021: 102157. [10] MOHSENI A, KUBE M, FAN L H, et al. Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate[J]. Environmental Science and Pollution Research, 2020, 27(21): 26905-26914. doi: 10.1007/s11356-020-09103-6 [11] AROLA K, VAN DER BRUGGEN B, MANTTARI M, et al. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(22): 2049-2116. doi: 10.1080/10643389.2019.1594519 [12] PEREZ-GONZALEZ A, URTIAGA A M, IBANEZ R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates[J]. Water Research, 2012, 46(2): 267-283. doi: 10.1016/j.watres.2011.10.046 [13] ZHOU M H, TAN Q Q, WANG Q, et al. Degradation of organics in reverse osmosis concentrate by electro-Fenton process[J]. Journal of Hazardous Materials, 2012, 215: 287-293. [14] PEREZ G, FERNANDEZ-ALBA A R, URTIAGA A M, et al. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment[J]. Water Research, 2010, 44(9): 2763-2772. doi: 10.1016/j.watres.2010.02.017 [15] BEUCKELS A, SMOLDERS E, MUYLAERT K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment[J]. Water Research, 2015, 77: 98-106. doi: 10.1016/j.watres.2015.03.018 [16] KONG Q X, LI L, MARTINEZ B, et al. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production[J]. Applied Biochemistry and Biotechnology, 2010, 160(1): 9-18. doi: 10.1007/s12010-009-8670-4 [17] GONCALVES A L, PIRES J C M, SIMOES M. A review on the use of microalgal consortia for wastewater treatment[J]. Algal Research-Biomass Biofuels and Bioproducts, 2017, 24: 403-415. [18] ZHANG C, ZHANG W N, HUANG Y X, et al. Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors[J]. Environmental Science and Pollution Research, 2017, 24(7): 6746-6756. doi: 10.1007/s11356-017-8402-1 [19] BADRUZZAMAN M, OPPENHEIMER J, ADHAM S, et al. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes[J]. Journal of Membrane Science, 2009, 326(2): 392-399. doi: 10.1016/j.memsci.2008.10.018 [20] ZHOU T, LIM T-T, CHIN S-S, et al. Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: Feasibility test of advanced oxidation processes with/without pretreatment[J]. Chemical Engineering Journal, 2011, 166(3): 932-939. doi: 10.1016/j.cej.2010.11.078 [21] LEE L Y, NG H Y, ONG S L, et al. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery[J]. Water Research, 2009, 43(16): 3948-3955. doi: 10.1016/j.watres.2009.06.016 [22] DENG H J S O T T E. Ozonation mechanism of carbamazepine and ketoprofen in RO concentrate from municipal wastewater treatment: Kinetic regimes, removal efficiency and matrix effect[J]. Science of the Total Environment, 2020, 717: 137150. doi: 10.1016/j.scitotenv.2020.137150 [23] FRICKE W, PETERS W S. The biophysics of leaf growth in salt-stressed barley. A study at the cell level[J]. Plant Physiology, 2002, 129(1): 374-388. doi: 10.1104/pp.001164 [24] PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae: A positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172. doi: 10.1016/j.biortech.2011.08.030 [25] MAO Y L, XIONG R W, GAO X F, et al. Analysis of the Status and Improvement of Microalgal Phosphorus Removal from Municipal Wastewater[J]. Processes, 2021, 9(9): 1486. doi: 10.3390/pr9091486 [26] HUANG N, XU Z B, WANG W L, et al. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal[J]. Chemosphere, 2022, 291(3): 133027. [27] BRADFORD-HARTKE Z, LANT P, LESLIE G. Phosphorus recovery from centralised municipal water recycling plants[J]. Chemical Engineering Research & Design, 2012, 90(1A): 78-85. [28] CHOI H J, LEE S M. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater[J]. Bioprocess and Biosystems Engineering, 2015, 38(4): 761-766. doi: 10.1007/s00449-014-1317-z [29] JACOB-LOPES E, SCOPARO C H G, LACERDA L M C F, et al. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors[J]. Chemical Engineering and Processing-Process Intensification, 2009, 48(1): 306-310. doi: 10.1016/j.cep.2008.04.007 [30] MAHARANI D K, ARDI A, SYAHRIN A A, et al. The effect of photoperiod on lipid production of mixed culture arthrospira maxima setchell et gardner and microalgae consortium of glagah isolate[J]. 6th International Conference on Biological Science (Icbs 2019) - Biodiversity as a Cornerstone for Embracing Future Humanity, 2020, 2260: 080002. [31] CHIA S R, ONG H C, CHEW K W, et al. Sustainable approaches for algae utilisation in bioenergy production[J]. Renewable Energy, 2018, 129: 838-852. doi: 10.1016/j.renene.2017.04.001 [32] WACKER A, PIEPHO M, HARWOOD J L, et al. Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species[J]. Frontiers in Plant Science, 2016, 7: 264. [33] CHEIRSILP B, TORPEE S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 2012, 110: 510-516. doi: 10.1016/j.biortech.2012.01.125 [34] GEORGE B, PANCHA I, DESAI C, et al. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus-A potential strain for bio-fuel production[J]. Bioresource Technology, 2014, 171: 367-374. doi: 10.1016/j.biortech.2014.08.086 [35] DIFUSA A, TALUKDAR J, KALITA M C, et al. Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species[J]. Biofuels-Uk, 2015, 6(1-2): 37-44. doi: 10.1080/17597269.2015.1045274 [36] NZAYISENGA J C, FARGE X, GROLL S L, et al. Effects of light intensity on growth and lipid production in microalgae grown in wastewater[J]. Biotechnology for Biofuels, 2020, 13: 4. doi: 10.1186/s13068-019-1646-x [37] PRIBYL P, CEPAK V, ZACHLEDER V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris[J]. Applied Microbiology and Biotechnology, 2012, 94(2): 549-561. doi: 10.1007/s00253-012-3915-5 [38] WHITTON R, OMETTO F, PIDOU M, et al. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment[J]. Environmental Technology Reviews, 2015, 4(1): 1-16. doi: 10.1080/21622515.2015.1018340 [39] GEIDER R J, LA ROCHE J. Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis[J]. European Journal of Phycology, 2002, 37(1): 1-17. doi: 10.1017/S0967026201003456 [40] RASDI N W, QIN J G. Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea[J]. Journal of Applied Phycology, 2015, 27(6): 2221-2230. doi: 10.1007/s10811-014-0495-z [41] LI Y C, CHEN Y F, CHEN P, et al. Characterization of a microalga Chlorella sp well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production[J]. Bioresource Technology, 2011, 102(8): 5138-5144. doi: 10.1016/j.biortech.2011.01.091 [42] ZHAO Y, YAN H, ZHOU J, et al. Bio-precipitation of calcium and magnesium ions through extracellular and intracellular process induced by Bacillus Licheniformis SRB2[J]. Minerals, 2019, 9(9): 526. doi: 10.3390/min9090526