[1] |
胡新军, 张敏, 余俊锋, 等. 中国餐厨垃圾处理的现状、问题和对策[J]. 生态学报, 2012, 32(14): 4575-4584.
|
[2] |
王丽华, 李宇宸, 韩聪. 城市餐厨垃圾处理技术分析及思路分析[J]. 中国资源综合利用, 2018, 36(12): 73-75.
|
[3] |
CONNOR J O, HOANG S A, BRADNEY L, et al. A review on the valorisation of food waste as a nutrient source and soil amendment[J]. Environmental Pollution. 2021, 272: 115985.
|
[4] |
邴君妍, 罗恩华, 金宜英, 等. 我国餐厨废弃物厌氧消化技术的物质流分析[J]. 环境工程, 2018, 36(8): 130-133.
|
[5] |
庄渊. 高效预处理+厌氧消化工艺处理餐厨垃圾工程实例[J]. 中国资源综合利用, 2018, 36(11): 86-88.
|
[6] |
谢苏峰, 尹贞, 薛秋玉, 等. 浅谈餐厨沼液的处理技术[J]. 安徽化工, 2020,46(5):81-84.
|
[7] |
成娟. 生活污水稀释餐厨垃圾厌氧消化液培养微藻及氮磷去除的研究[D]. 济南: 山东大学, 2017.
|
[8] |
郑炜, 杨兴兴, 万梅, 等. MBR组合工艺处理餐厨垃圾发酵废液的运行特性[J]. 水处理技术, 2018, 44(3): 118-120.
|
[9] |
吴健, 赵明星, 阮文权. A/O-MBR处理高COD和高氨氮餐厨废水试验研究[J]. 工业水处理, 2014, 34(4): 66-69.
|
[10] |
张春, 郑利兵, 郁达伟, 等. 沼液处理与资源化利用现状与展望[J]. 中国沼气, 2018, 36(5): 36-46.
|
[11] |
刘文蓉, 董飞, 王玉军, 等. UASB-MBR-NF-RO处理垃圾渗滤液与餐厨垃圾厌氧消化液[J]. 水处理技术, 2021, 47(9): 77-80.
|
[12] |
KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M. Sewage treatment with anammox science[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941
|
[13] |
YANG W, HE S, HAN M, et al. Nitrogen removal performance and microbial community structure in the start-up and substrate inhibition stages of an anammox reactor[J]. Journal of Bioscience and Bioengineering, 2018, 126(1): 88-95. doi: 10.1016/j.jbiosc.2018.02.004
|
[14] |
VAN DE GRAAF A A, MULDER A, DE BRUIJN P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4): 1246-1251. doi: 10.1128/aem.61.4.1246-1251.1995
|
[15] |
WANG G, XU X, ZHOU L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. doi: 10.1016/j.biortech.2017.02.125
|
[16] |
KELUSKAR R, NERURKAR A, DESAI A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry[J]. Bioresource Technology, 2013, 130: 390-397. doi: 10.1016/j.biortech.2012.12.066
|
[17] |
ARRIAGADA C, GUZMÁN-FIERRO V, GIUSTINIANOVICH E, et al. NOB suppression and adaptation strategies in the partial nitrification-Anammox process for a poultry manure anaerobic digester[J]. Process Biochemistry, 2017, 58: 258-265. doi: 10.1016/j.procbio.2017.03.028
|
[18] |
康晓峰, 王黎声, 刘春, 等. 膜曝气生物膜反应器生物脱氮研究进展[J]. 环境工程, 2021, 39(07): 38-45.
|
[19] |
COTE P, BERSILLON J L, HUYARD A. Bubble-free aeration using membranes-mass-transfer analysis[J]. Journal of Membrane Science, 1989, 47(1/2): 91-106.
|
[20] |
SYRON E, CASEY E. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements[J]. Environmental Science & Technology, 2008, 42(6): 1833-1844.
|
[21] |
YAMAGIWA K, OHKAWA A, HIRASA O. Simultaneous organic-carbon removal and nitrification by biofilm formed on oxygen enrichment membrane[J]. Journal of Chemical Engineering of Japan, 1994, 27(5): 638-643. doi: 10.1252/jcej.27.638
|
[22] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[23] |
江兴. 膜曝气生物膜反应器处理低碳氮比市政污水的同步脱氮除碳研究[D]. 广州: 广州大学, 2022.
|
[24] |
夏一帆, 王冰洁, 涂凌波, 等. DMBR短程硝化反硝化处理餐厨垃圾厌氧沼液[J]. 中国给水排水, 2021, 37(7): 27-33.
|
[25] |
YCHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[26] |
STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2): 686-697. doi: 10.4319/lo.2005.50.2.0686
|
[27] |
BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809. doi: 10.1016/j.watres.2010.09.005
|
[28] |
LYON B A, CORY R M, WEINBERG H S. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination /chloramination[J]. Journal of Hazardous Materials, 2014, 264: 411-419. doi: 10.1016/j.jhazmat.2013.10.065
|
[29] |
侯飞飞. MABR去除高盐废水中COD和氨氮的基础研究[D]. 天津: 天津大学, 2013.
|
[30] |
LI J, ZHANG Q, LI X, et al. Rapid start-up and stable maintenance of domestic wastewater nitritation through short-term hydroxylamine addition[J]. Bioresource Technology, 2019, 278: 468-472. doi: 10.1016/j.biortech.2019.01.056
|
[31] |
KINDAICHI T, OKABE S, SATOH H, et al. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes[J]. Water Science Technology, 2004, 49(11/12): 61-68.
|
[32] |
SOLIMAN M, ELDYASTI A. Development of partial nitrification as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime[J]. Bioresource Technology, 2016, 221: 85-95. doi: 10.1016/j.biortech.2016.09.023
|
[33] |
KOUBA V, CATRYSSE M, STRYJOVA H, et al. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor[J]. Water Science and Technology, 2014, 69(6): 1227-1233. doi: 10.2166/wst.2013.757
|
[34] |
王小龙. 基于颗粒污泥的单级自养脱氮系统构建及其脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[35] |
MAGRÍ A, VANOTTI M B, SZÖGI A A. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers[J]. Bioresource Technology, 2012, 114(1): 231-240.
|