[1] NEL A, XIA T, MÄDLER L, et al. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622-627. doi: 10.1126/science.1114397
[2] SUN T Y, GOTTSCHALK F, HUNGERBÜHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials [J]. Environmental Pollution, 2014, 185: 69-76. doi: 10.1016/j.envpol.2013.10.004
[3] HICKS A L, TEMIZEL-SEKERYAN S. Understanding the potential environmental benefits of nanosilver enabled consumer products [J]. NanoImpact, 2019, 16: 100183. doi: 10.1016/j.impact.2019.100183
[4] WU J T, LI C, ZHANG J, et al. Release of silver from nanoparticle-based filter paper and the impacts to mouse gut microbiota [J]. Environmental Science. Nano, 2020, 7(5): 1554-1565. doi: 10.1039/C9EN01387C
[5] YANG T X, PAULOSE T, REDAN B W, et al. Food and beverage ingredients induce the formation of silver nanoparticles in products stored within nanotechnology-enabled packaging [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1398-1412.
[6] XIANG Q Q, WANG D, ZHANG J L, et al. Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity [J]. Environmental Pollution, 2020, 256: 113504. doi: 10.1016/j.envpol.2019.113504
[7] ADAMCZYK Z, OĆWIEJA M, MROWIEC H, et al. Oxidative dissolution of silver nanoparticles: A new theoretical approach [J]. Journal of Colloid and Interface Science, 2016, 469: 355-364. doi: 10.1016/j.jcis.2015.12.051
[8] YIN Y G, YANG X Y, HU L G, et al. Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum [J]. Environmental Science & Technology Letters, 2016, 3(4): 160-165.
[9] KANG F X, ALVAREZ P J, ZHU D Q. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity [J]. Environmental Science & Technology, 2014, 48(1): 316-322.
[10] MAKAROV V V, LOVE A J, SINITSYNA O V, et al. Green nanotechnologies: Synthesis of metal nanoparticles using plants [J]. Acta Naturae, 2014, 6(1): 35-44. doi: 10.32607/20758251-2014-6-1-35-44
[11] QUEVEDO A C, LYNCH I, VALSAMI-JONES E. Cellular repair mechanisms triggered by exposure to silver nanoparticles and ionic silver in embryonic zebrafish cells [J]. Environmental Science:Nano, 2021, 8(9): 2507-2522. doi: 10.1039/D1EN00422K
[12] MALYSHEVA A, IVASK A, DOOLETTE C L, et al. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes [J]. Nature Nanotechnology, 2021, 16(8): 926-932. doi: 10.1038/s41565-021-00914-3
[13] LI L Z, WU H F, PEIJNENBURG W J G M, et al. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida [J]. Nanotoxicology, 2015, 9(6): 792-801. doi: 10.3109/17435390.2014.976851
[14] DANG F, JIANG Y Y, LI M, et al. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties [J]. Environmental Pollution, 2018, 243: 364-373. doi: 10.1016/j.envpol.2018.08.092
[15] DIEZ-ORTIZ M, LAHIVE E, KILLE P, et al. Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthwormLumbricus rubellus [J]. Environmental Toxicology and Chemistry, 2015, 34(10): 2263-2270. doi: 10.1002/etc.3036
[16] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): A critical review [J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 109-124. doi: 10.1007/s00216-012-6363-2
[17] GAO J, POWERS K, WANG Y, et al. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles [J]. Chemosphere, 2012, 89(1): 96-101. doi: 10.1016/j.chemosphere.2012.04.024
[18] ZHANG H F, ZHENG Y C, WANG X C, et al. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments [J]. Journal of Environmental Management, 2021, 294: 113041. doi: 10.1016/j.jenvman.2021.113041
[19] AIKEN G R, HSU-KIM H, RYAN J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids [J]. Environmental Science & Technology, 2011, 45(8): 3196-3201.
[20] LOUIE S M, TILTON R D, LOWRY G V. Critical review: Impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials [J]. Environmental Science:Nano, 2016, 3(2): 283-310. doi: 10.1039/C5EN00104H
[21] YU S J, LIU J F, YIN Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects [J]. Journal of Environmental Sciences, 2018, 63: 198-217. doi: 10.1016/j.jes.2017.06.021
[22] WANG Z Y, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter [J]. Environmental Science:Nano, 2016, 3(2): 240-255. doi: 10.1039/C5EN00230C
[23] POKHREL L R, DUBEY B, SCHEUERMAN P R. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles [J]. Environmental Science & Technology, 2013, 47(22): 12877-12885.
[24] BADIREDDY A R, FARNER BUDARZ J, MARINAKOS S M, et al. Formation of silver nanoparticles in visible light-illuminated waters: Mechanism and possible impacts on the persistence of AgNPs and bacterial Lysis [J]. Environmental Engineering Science, 2014, 31(7): 338-349. doi: 10.1089/ees.2013.0366
[25] YANG C W, YUAN L, ZHOU H Z, et al. Coating ligand-mediated dynamic formation of natural organic matter (NOM) corona on engineered nanoparticles in natural environments [J]. Environmental Science:Nano, 2021, 8(4): 1029-1041. doi: 10.1039/D0EN01223H
[26] 何莹, 刘洋, 陈治廷, 等. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响 [J]. 环境化学, 2019, 38(8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902 HE Y, LIU Y, CHEN Z T, et al. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles [J]. Environmental Chemistry, 2019, 38(8): 1757-1767(in Chinese). doi: 10.7524/j.issn.0254-6108.2018102902
[27] SHANG E X, LI Y, NIU J F, et al. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles [J]. Water Research, 2017, 124: 595-604. doi: 10.1016/j.watres.2017.08.001
[28] SHI J P, XU B, SUN X, et al. Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis: Effect of particle size [J]. Aquatic Toxicology, 2013, 132/133: 53-60. doi: 10.1016/j.aquatox.2013.02.001
[29] ZHANG W C, SONG K, DING R R, et al. Role of polystyrene microplastics in sunlight-mediated transformation of silver in aquatic environments: Mechanisms, kinetics and toxicity [J]. Journal of Hazardous Materials, 2021, 419: 126429. doi: 10.1016/j.jhazmat.2021.126429
[30] LIU J Y, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids [J]. Environmental Science & Technology, 2010, 44(6): 2169-2175.
[31] LI Y, NIU J F, SHANG E X, et al. Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation [J]. Environmental Science & Technology, 2014, 48(9): 4946-4953.
[32] YU S J, YIN Y G, ZHOU X X, et al. Transformation kinetics of silver nanoparticles and silver ions in aquatic environments revealed by double stable isotope labeling [J]. Environmental Science:Nano, 2016, 3(4): 883-893. doi: 10.1039/C6EN00104A
[33] ZOU X Y, SHI J P, ZHANG H W. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation [J]. Journal of Hazardous Materials, 2015, 292: 61-69. doi: 10.1016/j.jhazmat.2015.03.005
[34] FERNANDO I, ZHOU Y. Concentration dependent effect of humic acid on the transformations of silver nanoparticles [J]. Journal of Molecular Liquids, 2019, 284: 291-299. doi: 10.1016/j.molliq.2019.04.027
[35] OSTERMEYER A K, KOSTIGEN MUMUPER C, SEMPRINI L, et al. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea [J]. Environmental Science & Technology, 2013, 47(24): 14403-14410.
[36] ZHANG W C, HUANG J L, LIANG L, et al. Dual impact of dissolved organic matter on cytotoxicity of PVP-Ag NPs to Escherichia coli: Mitigation and intensification [J]. Chemosphere, 2019, 214: 754-763. doi: 10.1016/j.chemosphere.2018.09.179
[37] YANG Y, ZHENG S M, LI R X, et al. New insights into the facilitated dissolution and sulfidation of silver nanoparticles under simulated sunlight irradiation in aquatic environments by extracellular polymeric substances [J]. Environmental Science:Nano, 2021, 8(3): 748-757. doi: 10.1039/D0EN01142H
[38] FREITAS D N, MARTINOLICH A J, AMARIS Z N, et al. Beyond the passive interactions at the nano-bio interface: Evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles [J]. Journal of Nanobiotechnology, 2016, 14: 7. doi: 10.1186/s12951-016-0160-6
[39] LIU W, WORMS I A M, HERLIN-BOIME N, et al. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: Impact on metal substitution by Ag(i), corona formation and enzymatic activity [J]. Nanoscale, 2017, 9(19): 6581-6594. doi: 10.1039/C7NR01075C
[40] GONDIKAS A P, MORRIS A, REINSCH B C, et al. Cysteine-induced modifications of zero-valent silver nanomaterials: Implications for particle surface chemistry, aggregation, dissolution, and silver speciation [J]. Environmental Science & Technology, 2012, 46(13): 7037-7045.
[41] 黄娇龙, 刘夏薇, 黄曼绮, 等. 腐殖酸对沉积物中纳米银的释放及其毒性的影响研究 [J]. 水生生物学报, 2020, 44(5): 1119-1129. doi: 10.7541/2020.130 HUANG J L, LIU X W, HUANG M Q, et al. The release of sediment-associated silver nanoparticles by humic acid and its toxicity on zebrafish [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1119-1129(in Chinese). doi: 10.7541/2020.130
[42] TENORIO R, FEDDERS A C, STRATHMANN T J, et al. Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems [J]. Environmental Science:Water Research & Technology, 2017, 3(6): 1095-1108.
[43] TONG L, DUAN P, TIAN X, et al. Polystyrene microplastics sunlight-induce oxidative dissolution, chemical transformation and toxicity enhancement of silver nanoparticles [J]. Science of the Total Environment, 2022, 827: 154180. doi: 10.1016/j.scitotenv.2022.154180
[44] DING Y Y, BAI X, YE Z F, et al. Humic acid regulation of the environmental behavior and phytotoxicity of silver nanoparticles to Lemna minor [J]. Environmental Science:Nano, 2019, 6(12): 3712-3722. doi: 10.1039/C9EN00980A
[45] ZHOU W, LIU Y L, STALLWORTH A M, et al. Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles [J]. Environmental Science & Technology, 2016, 50(22): 12214-12224.
[46] AZODI M, SULTAN Y, GHOSHAL S. Dissolution behavior of silver nanoparticles and formation of secondary silver nanoparticles in municipal wastewater by single-particle ICP-MS [J]. Environmental Science & Technology, 2016, 50(24): 13318-13327.
[47] LEVAK M, BURIĆ P, DUTOUR SIKIRIĆ M, et al. Effect of protein Corona on silver nanoparticle stabilization and ion release kinetics in artificial seawater [J]. Environmental Science & Technology, 2017, 51(3): 1259-1266.
[48] FU Q L, ZHONG C J, QING T, et al. Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L [J]. Chemosphere, 2021, 280: 130863. doi: 10.1016/j.chemosphere.2021.130863
[49] CÁCERES-VÉLEZ P R, FASCINELI M L, SOUSA M H, et al. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating [J]. Journal of Hazardous Materials, 2018, 353: 173-181. doi: 10.1016/j.jhazmat.2018.04.019
[50] BOEHMLER D J, O’DELL Z J, CHUNG C, et al. Bovine serum albumin enhances silver nanoparticle dissolution kinetics in a size- and concentration-dependent manner [J]. Langmuir, 2020, 36(4): 1053-1061. doi: 10.1021/acs.langmuir.9b03251
[51] GUNSOLUS I L, MOUSAVI M P S, HUSSEIN K, et al. Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity [J]. Environmental Science & Technology, 2015, 49(13): 8078-8086.
[52] AFSHINNIA K, MARRONE B, BAALOUSHA M. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles [J]. Science of the Total Environment, 2018, 625: 1518-1526. doi: 10.1016/j.scitotenv.2017.12.299
[53] POKHREL L R, DUBEY B, SCHEUERMAN P R. Natural water chemistry (dissolved organic carbon, pH, and hardness) modulates colloidal stability, dissolution, and antimicrobial activity of citrate functionalized silver nanoparticles [J]. Environmental Science:Nano, 2014, 1(1): 45-54. doi: 10.1039/C3EN00017F
[54] BAALOUSHA M, MOTELICA-HEINO M, COUSTUMER P L. Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 272(1/2): 48-55.
[55] GUO Z, CHEN G Q, ZENG G M, et al. Are silver nanoparticles always toxic in the presence of environmental anions? [J]. Chemosphere, 2017, 171: 318-323. doi: 10.1016/j.chemosphere.2016.12.077
[56] ZHAO J, LI Y, WANG X J, et al. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles [J]. Environmental Pollution, 2021, 279: 116926. doi: 10.1016/j.envpol.2021.116926
[57] LI P H, SU M, WANG X D, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems [J]. Journal of Environmental Sciences, 2020, 88: 248-259. doi: 10.1016/j.jes.2019.09.013
[58] CHAMBERS B A, AFROOZ A R M N, BAE S, et al. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles [J]. Environmental Science & Technology, 2014, 48(1): 761-769.
[59] LEVARD C, MITRA S, YANG T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli [J]. Environmental Science & Technology, 2013, 47(11): 5738-5745.
[60] AGNIHOTRI S, MUKHERJI S, MUKHERJI S. Impact of background water quality on disinfection performance and silver release of immobilized silver nanoparticles: Modeling disinfection kinetics, bactericidal mechanism and aggregation behavior [J]. Chemical Engineering Journal, 2019, 372: 684-696. doi: 10.1016/j.cej.2019.04.186
[61] REN M J, HORN H, FRIMMEL F H. Aggregation behavior of TiO2 nanoparticles in municipal effluent: Influence of ionic strengthen and organic compounds [J]. Water Research, 2017, 123: 678-686. doi: 10.1016/j.watres.2017.07.021
[62] HUANG T D, SUI M H, YAN X, et al. Anti-algae efficacy of silver nanoparticles to Microcystis aeruginosa: Influence of NOM, divalent cations, and pH [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509: 492-503. doi: 10.1016/j.colsurfa.2016.09.009
[63] MOLLEMAN B, HIEMSTRA T. Time, pH, and size dependency of silver nanoparticle dissolution: The road to equilibrium [J]. Environmental Science:Nano, 2017, 4(6): 1314-1327. doi: 10.1039/C6EN00564K
[64] LAN T, WU P, LIU Z Y, et al. Understanding the effect of pH on the solubility and aggregation extent of humic acid in solution by combining simulation and the experiment [J]. Environmental Science & Technology, 2022, 56(2): 917-927.
[65] LIU S C, TAN M X, GE L Q, et al. Photooxidation mechanism of As(III) by straw-derived dissolved organic matter [J]. Science of the Total Environment, 2021, 757: 144049. doi: 10.1016/j.scitotenv.2020.144049
[66] RONG H Y, GARG S, WAITE T D. Impact of light and suwanee river fulvic acid on O2 and H2O2 mediated oxidation of silver nanoparticles in simulated natural waters [J]. Environmental Science & Technology, 2019, 53(12): 6688-6698.
[67] YU S J, YIN Y G, CHAO J B, et al. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+ [J]. Environmental Science & Technology, 2014, 48(1): 403-411.
[68] ADEGBOYEGA N F, SHARMA V K, SISKOVA K, et al. Interactions of aqueous Ag+ with fulvic acids: Mechanisms of silver nanoparticle formation and investigation of stability [J]. Environmental Science & Technology, 2013, 47(2): 757-764.
[69] LIU M, GAO X Y, PAN F, et al. Effect of pyrene on formation of natural silver nanoparticles via reduction of silver ions by humic acid under UV irradiation [J]. Chemosphere, 2020, 247: 125937. doi: 10.1016/j.chemosphere.2020.125937
[70] CHEN N, CAO S Y, ZHANG L, et al. Structural dependent Cr(VI) adsorption and reduction of biochar: Hydrochar versus pyrochar [J]. Science of the Total Environment, 2021, 783: 147084. doi: 10.1016/j.scitotenv.2021.147084
[71] SHENG G P, XU J, LI W H, et al. Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge [J]. Chemosphere, 2013, 93(7): 1436-1441. doi: 10.1016/j.chemosphere.2013.07.076
[72] PENG H B, GUO H Y, GAO P, et al. Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors [J]. Science of the Total Environment, 2021, 779: 146326. doi: 10.1016/j.scitotenv.2021.146326
[73] HUANG Y N, QIAN T T, DANG F, et al. Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils [J]. Nature Communications, 2019, 10: 3775. doi: 10.1038/s41467-019-11643-6
[74] YIN Y G, LIU J F, JIANG G B. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter [J]. ACS Nano, 2012, 6(9): 7910-7919. doi: 10.1021/nn302293r
[75] LIU H T, GE Q, XU F C, et al. Dissolved black carbon induces fast photo-reduction of silver ions under simulated sunlight [J]. Science of the Total Environment, 2021, 775: 145897. doi: 10.1016/j.scitotenv.2021.145897
[76] HOU W C, STUART B, HOWES R, et al. Sunlight-driven reduction of silver ions by natural organic matter: Formation and transformation of silver nanoparticles [J]. Environmental Science & Technology, 2013, 47(14): 7713-7721.
[77] LIU H T, GU X Y, WEI C H, et al. Threshold concentrations of silver ions exist for the sunlight-induced formation of silver nanoparticles in the presence of natural organic matter [J]. Environmental Science & Technology, 2018, 52(7): 4040-4050.
[78] XIONG S C, CAO X S, FANG H, et al. Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light [J]. Science of the Total Environment, 2021, 775: 145867. doi: 10.1016/j.scitotenv.2021.145867
[79] YIN Y G, SHEN M H, ZHOU X X, et al. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle [J]. Environmental Science & Technology, 2014, 48(16): 9366-9373.
[80] NIE X F, ZHU K C, ZHAO S, et al. Interaction of Ag+ with soil organic matter: Elucidating the formation of silver nanoparticles [J]. Chemosphere, 2020, 243: 125413. doi: 10.1016/j.chemosphere.2019.125413
[81] GUO H Y, HAN F, SHANG H P, et al. New insight into naturally formed nanosilver particles: Role of plant root exudates [J]. Environmental Science:Nano, 2021, 8(6): 1580-1592. doi: 10.1039/D0EN01188F
[82] DONG B, LIU G F, ZHOU J T, et al. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature [J]. Journal of Hazardous Materials, 2020, 383: 121190. doi: 10.1016/j.jhazmat.2019.121190
[83] GUO H Y, MA C X, THISTLE L, et al. Transformation of Ag ions into Ag nanoparticle-loaded AgCl microcubes in the plant root zone [J]. Environmental Science:Nano, 2019, 6(4): 1099-1110. doi: 10.1039/C9EN00088G
[84] SINGH A, HOU W C, LIN T F, et al. Roles of silver-chloride complexations in sunlight-driven formation of silver nanoparticles [J]. Environmental Science & Technology, 2019, 53(19): 11162-11169.
[85] ADEGBOYEGA N F, SHARMA V K, SISKOVA K M, et al. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies [J]. Environmental Science & Technology, 2014, 48(6): 3228-3235.
[86] YIN Y G, HAN D, TAI C, et al. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag+-dissolved organic matter solution [J]. Environmental Pollution, 2017, 225: 66-73. doi: 10.1016/j.envpol.2017.03.048
[87] YIN Y G, SHEN M H, TAN Z Q, et al. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: Impacts on the aggregation of silver nanoparticles [J]. Environmental Science & Technology, 2015, 49(11): 6581-6589.
[88] GUO B L, ALIVIO T E G, FLEER N A, et al. Elucidating the role of dissolved organic matter and sunlight in mediating the formation of Ag-Au bimetallic alloy nanoparticles in the aquatic environment [J]. Environmental Science & Technology, 2021, 55(3): 1710-1720.
[89] CHUTRAKULWONG F, THAMAPHAT K, LIMSUWAN P. Photo-irradiation induced green synthesis of highly stable silver nanoparticles using durian rind biomass: Effects of light intensity, exposure time and pH on silver nanoparticles formation [J]. Journal of Physics Communications, 2020, 4(9): 095015. doi: 10.1088/2399-6528/abb4b5
[90] ZHANG X, YANG C W, YU H Q, et al. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS) [J]. Water Research, 2016, 106: 242-248. doi: 10.1016/j.watres.2016.10.004
[91] TAN Z Q, GUO X R, YIN Y G, et al. Freezing facilitates formation of silver nanoparticles under natural and simulated sunlight conditions [J]. Environmental Science & Technology, 2019, 53(23): 13802-13811.
[92] LIU Y J, LI C, LUO S, et al. Inter-transformation between silver nanoparticles and Ag+ induced by humic acid under light or dark conditions [J]. Ecotoxicology, 2021, 30(7): 1376-1385. doi: 10.1007/s10646-020-02284-3
[93] ZHAO J, WANG X J, HOANG S A, et al. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods [J]. Journal of Hazardous Materials, 2021, 418: 126368. doi: 10.1016/j.jhazmat.2021.126368
[94] YANG F, WANG C P, SUN H W. A comprehensive review of biochar-derived dissolved matters in biochar application: Production, characteristics, and potential environmental effects and mechanisms [J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105258. doi: 10.1016/j.jece.2021.105258