[1] |
FEI X F, CHRISTAKOS G, XIAO R, et al. Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information [J]. Science of the Total Environment, 2019, 661: 168-177. doi: 10.1016/j.scitotenv.2019.01.149
|
[2] |
CRAWFORD J W, HARRIS J A, RITZ K, et al. Towards an evolutionary ecology of life in soil [J]. Trends in Ecology & Evolution, 2005, 20(2): 81-87.
|
[3] |
KHAN K, LU Y L, KHAN H, et al. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan [J]. Food and Chemical Toxicology, 2013, 58: 449-458. doi: 10.1016/j.fct.2013.05.014
|
[4] |
郭娟, 崔荣国, 闫卫东, 等. 2019年中国矿产资源形势回顾与展望 [J]. 中国矿业, 2020, 29(1): 1-5.
GUO J, CUI R G, YAN W D, et al. Outlook and overview of mineral resources situation of China in 2019 [J]. China Mining Magazine, 2020, 29(1): 1-5(in Chinese).
|
[5] |
NICOLÁS C, MARTIN-BERTELSEN T, FLOUDAS D, et al. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen [J]. The ISME Journal, 2019, 13(4): 977-988. doi: 10.1038/s41396-018-0331-6
|
[6] |
林耀奔, 叶艳妹, 杨建辉, 等. 土地整治对土壤微生物多样性的影响分析 [J]. 环境科学学报, 2019, 39(8): 2644-2653.
LIN Y B, YE Y M, YANG J H, et al. The effect of land consolidation on soil microbial diversity [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2644-2653(in Chinese).
|
[7] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望 [J]. 植物生态学报, 2014, 38(3): 298-310. doi: 10.3724/SP.J.1258.2014.00027
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310(in Chinese). doi: 10.3724/SP.J.1258.2014.00027
|
[8] |
ISLAM W, NOMAN A, NAVEED H, et al. Role of environmental factors in shaping the soil microbiome [J]. Environmental Science and Pollution Research, 2020, 27(33): 41225-41247. doi: 10.1007/s11356-020-10471-2
|
[9] |
WANG J W, NIU W Q, LI Y, et al. Subsurface drip irrigation enhances soil nitrogen and phosphorus metabolism in tomato root zones and promotes tomato growth [J]. Applied Soil Ecology, 2018, 124: 240-251. doi: 10.1016/j.apsoil.2017.11.014
|
[10] |
MARLEAU J N, PELLER T, GUICHARD F, et al. Converting ecological currencies: Energy, material, and information flows [J]. Trends in Ecology & Evolution, 2020, 35(12): 1068-1077.
|
[11] |
DELEN D. A holistic approach to manufacturing systems modelling [J]. International Journal of Simulation and Process Modelling, 2009, 5(1): 54. doi: 10.1504/IJSPM.2009.025827
|
[12] |
KORHONEN J, WIHERSAARI M, SAVOLAINEN I. Industrial ecosystem in the Finnish forest industry: Using the material and energy flow model of a forest ecosystem in a forest industry system [J]. Ecological Economics, 2001, 39(1): 145-161. doi: 10.1016/S0921-8009(01)00204-X
|
[13] |
ZHANG J. Energy flows in complex ecological systems: A review [J]. Journal of Systems Science and Complexity, 2009, 22(3): 345-359. doi: 10.1007/s11424-009-9169-3
|
[14] |
MERINO-MARTÍN L, STOKES A, GWEON H S, et al. Interacting effects of land use type, microbes and plant traits on soil aggregate stability [J]. Soil Biology and Biochemistry, 2021, 154: 108072. doi: 10.1016/j.soilbio.2020.108072
|
[15] |
XIE H T, LI J W, ZHANG B, et al. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates [J]. Scientific Reports, 2015, 5: 14687. doi: 10.1038/srep14687
|
[16] |
GUPTA V V S R, GERMIDA J J. Soil aggregation: Influence on microbial biomass and implications for biological processes [J]. Soil Biology and Biochemistry, 2015, 80: A3-A9. doi: 10.1016/j.soilbio.2014.09.002
|
[17] |
XIAO S S, ZHANG W, YE Y Y, et al. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem [J]. Scientific Reports, 2017, 7: 41402. doi: 10.1038/srep41402
|
[18] |
JING Y L, DING X L, ZHAO X C, et al. Non-additive effects of nitrogen and phosphorus fertilization on microbial biomass and residue distribution in a subtropical plantation [J]. European Journal of Soil Biology, 2022, 108: 103376. doi: 10.1016/j.ejsobi.2021.103376
|
[19] |
LALIBERTÉ E, KARDOL P, DIDHAM R K, et al. Soil fertility shapes belowground food webs across a regional climate gradient [J]. Ecology Letters, 2017, 20(10): 1273-1284. doi: 10.1111/ele.12823
|
[20] |
MURASE J, HIDA A, OGAWA K, et al. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil [J]. Soil Biology and Biochemistry, 2015, 80: 237-243. doi: 10.1016/j.soilbio.2014.10.015
|
[21] |
GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems - A meta-analysis [J]. Soil Biology and Biochemistry, 2017, 115: 452-460. doi: 10.1016/j.soilbio.2017.09.018
|
[22] |
DANG P F, LI C F, LU C, et al. Effect of fertilizer management on the soil bacterial community in agroecosystems across the globe [J]. Agriculture, Ecosystems & Environment, 2022, 326: 107795.
|
[23] |
YANG F, TIAN J, FANG H J, et al. Functional soil organic matter fractions, microbial community, and enzyme activities in a mollisol under 35 years manure and mineral fertilization [J]. Journal of Soil Science and Plant Nutrition, 2019, 19(2): 430-439. doi: 10.1007/s42729-019-00047-6
|
[24] |
VOLTR V, MENŠÍK L, HLISNIKOVSKÝ L, et al. The soil organic matter in connection with soil properties and soil inputs [J]. Agronomy, 2021, 11(4): 779. doi: 10.3390/agronomy11040779
|
[25] |
EVANGELOU V P, PHILLIPS R E. Cation exchange in soils[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 343-410.
|
[26] |
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century [J]. Global Change Biology, 2020, 26(1): 261-273. doi: 10.1111/gcb.14859
|
[27] |
WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems [J]. Soil Biology and Biochemistry, 2021, 162: 108422. doi: 10.1016/j.soilbio.2021.108422
|
[28] |
ZHAO R D, HE M, JIANG C L, et al. Microbial community structure in rhizosphere soil rather than that in bulk soil characterizes aggregate-associated organic carbon under long-term forest conversion in subtropical region [J]. Rhizosphere, 2021, 20: 100438. doi: 10.1016/j.rhisph.2021.100438
|
[29] |
LAL R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems [J]. Global Change Biology, 2018, 24(8): 3285-3301. doi: 10.1111/gcb.14054
|
[30] |
GHIMIRE R, LAMICHHANE S, ACHARYA B S, et al. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review [J]. Journal of Integrative Agriculture, 2017, 16(1): 1-15. doi: 10.1016/S2095-3119(16)61337-0
|
[31] |
CROWTHER T W, van den HOOGEN J, WAN J, et al. The global soil community and its influence on biogeochemistry [J]. Science, 2019, 365(6455): eaav0550. doi: 10.1126/science.aav0550
|
[32] |
ZHANG Y L, HEAL K V, SHI M J, et al. Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient [J]. Science of the Total Environment, 2022, 818: 151823. doi: 10.1016/j.scitotenv.2021.151823
|
[33] |
BASTIDA F, ELDRIDGE D J, GARCÍA C, et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes [J]. The ISME Journal, 2021, 15(7): 2081-2091. doi: 10.1038/s41396-021-00906-0
|
[34] |
苏丹, 张凯, 陈法霖, 等. 施氮对不同有机碳水平桉树林土壤微生物群落碳代谢的影响 [J]. 生态学报, 2015, 35(18): 5940-5947.
SU D, ZHANG K, CHEN F L, et al. Effects of nitrogen application on carbon metabolism of soil microbial communities in eucalyptus plantations with different levels of soil organic carbon [J]. Acta Ecologica Sinica, 2015, 35(18): 5940-5947(in Chinese).
|
[35] |
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage [J]. Nature Microbiology, 2017, 2: 17105. doi: 10.1038/nmicrobiol.2017.105
|
[36] |
喻国军, 谢晓尧. 喀斯特地区造林对土壤团聚体稳定性及微生物碳代谢活性的影响 [J]. 水土保持研究, 2020, 27(6): 21-27,36.
YU G J, XIE X Y. Effects of afforestation on soil aggregate stability and microbial carbon metabolism activity in Karst area [J]. Research of Soil and Water Conservation, 2020, 27(6): 21-27,36(in Chinese).
|
[37] |
GLASSMAN S I, WEIHE C, LI J H, et al. Decomposition responses to climate depend on microbial community composition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11994-11999. doi: 10.1073/pnas.1811269115
|
[38] |
WANG C Q, XUE L, DONG Y H, et al. Soil organic carbon fractions, C-cycling hydrolytic enzymes, and microbial carbon metabolism in Chinese fir plantations [J]. Science of the Total Environment, 2021, 758: 143695. doi: 10.1016/j.scitotenv.2020.143695
|
[39] |
GLICK B R. Soil microbes and sustainable agriculture [J]. Pedosphere, 2018, 28(2): 167-169. doi: 10.1016/S1002-0160(18)60020-7
|
[40] |
LI X F, XU J, SHI Z, et al. Regulation of protist grazing on bacterioplankton by hydrological conditions in coastal waters [J]. Estuarine, Coastal and Shelf Science, 2019, 218: 1-8. doi: 10.1016/j.ecss.2018.11.013
|
[41] |
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论 [J]. 中国科学:地球科学, 2021, 51(5): 680-695.
LIANG C, ZHU X]. An overview of carbon storage mechanism of soil microbial carbon pump [J]. Chinese Science:Earth Science, 2021, 51(5): 680-695(in Chinese).
|
[42] |
DENG F B, LIANG C. Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil [J]. Soil Biology and Biochemistry, 2022, 165: 108486. doi: 10.1016/j.soilbio.2021.108486
|
[43] |
ZHAO Y, LI Y L, YANG F. Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements [J]. Science of the Total Environment, 2021, 751: 141614. doi: 10.1016/j.scitotenv.2020.141614
|
[44] |
YAO Q M, LI Z, SONG Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil [J]. Nature Ecology & Evolution, 2018, 2(3): 499-509.
|
[45] |
MENDEZ M O, MAIER R M. Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology [J]. Environmental Health Perspectives, 2008, 116(3): 278-283. doi: 10.1289/ehp.10608
|
[46] |
VEDRAN, VUČIĆ, SUSANN, et al. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams [J]. Engineering in Life Sciences, 2021, 21(3/4): 77-86.
|
[47] |
AMY C, AVICE J C, LAVAL K, et al. Are native phosphate-solubilizing bacteria a relevant alternative to mineral fertilizations for crops?Part II: PSB inoculation enables a halving of P input and improves the microbial community in the rapeseed rhizosphere [J]. Rhizosphere, 2022, 21: 100480. doi: 10.1016/j.rhisph.2022.100480
|
[48] |
ZHANG J E, FENG L F, OUYANG Y, et al. Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China [J]. CATENA, 2020, 195: 104686. doi: 10.1016/j.catena.2020.104686
|
[49] |
CHENG Y, ELRYS A S, MERWAD A R M, et al. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium [J]. Environmental Science & Technology, 2022, 56(6): 3791-3800.
|
[50] |
CHINTA Y D, UCHIDA Y, ARAKI H. Availability of nitrogen supply from cover crops during residual decomposition by soil microorganisms and its utilization by lettuce (Lactuca sativa L. ) [J]. Scientia Horticulturae, 2020, 270: 109415. doi: 10.1016/j.scienta.2020.109415
|
[51] |
LING N, WANG T T, KUZYAKOV Y. Rhizosphere bacteriome structure and functions [J]. Nature Communications, 2022, 13: 836. doi: 10.1038/s41467-022-28448-9
|
[52] |
NAVARRO-NOYA Y E, HERNÁNDEZ-MENDOZA E, MORALES-JIMÉNEZ J, et al. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings [J]. Applied Soil Ecology, 2012, 62: 52-60. doi: 10.1016/j.apsoil.2012.07.011
|
[53] |
NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis [J]. Geoderma, 2017, 288: 79-96. doi: 10.1016/j.geoderma.2016.11.004
|
[54] |
许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展 [J]. 应用生态学报, 2020, 31(12): 4312-4320.
XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: A review [J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320(in Chinese).
|
[55] |
STARKE R, MONDÉJAR R L, HUMAN Z R, et al. Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach [J]. Soil Biology and Biochemistry, 2021, 155: 108170. doi: 10.1016/j.soilbio.2021.108170
|
[56] |
ARAÚJO A S F, MONTEIRO R T R, ABARKELI R B. Effect of glyphosate on the microbial activity of two Brazilian soils [J]. Chemosphere, 2003, 52(5): 799-804. doi: 10.1016/S0045-6535(03)00266-2
|
[57] |
AL-ANI M A M, HMOSHI R M, KANAAN I A, et al. Effect of pesticides on soil microorganisms [J]. Journal of Physics:Conference Series, 2019, 1294(7): 072007. doi: 10.1088/1742-6596/1294/7/072007
|
[58] |
田其凡, 何玘霜, 陆安祥, 等. 农田土壤抗生素抗性基因与微生物群落的关系 [J]. 环境化学, 2020, 39(5): 1346-1355. doi: 10.7524/j.issn.0254-6108.2019060602
TIAN Q F, HE Q S, LU A X, et al. Relationship between antibiotic resistance genes and microbial communities in farmland soil [J]. Environmental Chemistry, 2020, 39(5): 1346-1355(in Chinese). doi: 10.7524/j.issn.0254-6108.2019060602
|
[59] |
ZHANG W, LIU Y G, TAN X F, et al. Enhancement of detoxification of petroleum hydrocarbons and heavy metals in oil-contaminated soil by using Glycine-β-cyclodextrin [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1155. doi: 10.3390/ijerph16071155
|
[60] |
NISHIWAKI J, KAWABE Y, KOMAI T, et al. Decomposition of gasoline hydrocarbons by natural microorganisms in Japanese soils [J]. Geosciences, 2018, 8(2): 35. doi: 10.3390/geosciences8020035
|
[61] |
KOŠNÁŘ Z, MERCL F, TLUSTOŠ P. Ability of natural attenuation and phytoremediation using maize (Zea mays L. ) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil [J]. Ecotoxicology and Environmental Safety, 2018, 153: 16-22. doi: 10.1016/j.ecoenv.2018.01.049
|
[62] |
LI X N, QU C S, BIAN Y R, et al. New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics [J]. Environmental Pollution, 2019, 255: 113312. doi: 10.1016/j.envpol.2019.113312
|
[63] |
KOTOKY R, RAJKUMARI J, PANDEY P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil [J]. Journal of Environmental Management, 2018, 217: 858-870. doi: 10.1016/j.jenvman.2018.04.022
|
[64] |
郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102
HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102
|
[65] |
GAN C D, GAN Z W, CUI S F, et al. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area [J]. Science of the Total Environment, 2021, 771: 144809. doi: 10.1016/j.scitotenv.2020.144809
|
[66] |
CUI S F, FU Y Z, ZHOU B Q, et al. Transfer characteristic of fluorine from atmospheric dry deposition, fertilizers, pesticides, and phosphogypsum into soil [J]. Chemosphere, 2021, 278: 130432. doi: 10.1016/j.chemosphere.2021.130432
|
[67] |
傅绍光, 刘鹏, 罗虹, 等. 铝和氟对茶树根际土壤微生物交互作用的研究 [J]. 浙江师范大学学报(自然科学版), 2009, 32(3): 332-337.
FU S G, LIU P, LUO H, et al. Interaction of aluminum and fluorine stress on soil microbes of tea rhizosphere [J]. Journal of Zhejiang Normal University (Natural Sciences), 2009, 32(3): 332-337(in Chinese).
|
[68] |
2020年城市固体废物污染环境防治年报发布[J]. 再生资源与循环经济, 2021, 14(2): 14.
2020 annual report on prevention and control of environmental pollution by urban solid waste released[J]. Recyclable Resources and Circular Economy, 2021, 14(2): 14(in Chinese).
|
[69] |
中华人民共和国环境保护部. 2014年全国大、中城市固体废物污染环境防治年报(节选) [J]. 再生资源与循环经济, 2015, 8(1): 4-8. doi: 10.3969/j.issn.1674-0912.2015.01.003
Ministry of Environmental Protection of the People's Republic of China. 2014 national annual report on prevention and control of environmental pollution by solid waste in large and medium cities (excerpt) [J]. Recyclable Resources and Circular Economy, 2015, 8(1): 4-8(in Chinese). doi: 10.3969/j.issn.1674-0912.2015.01.003
|
[70] |
ZHOU Y Y, REN B Z, HURSTHOUSE A, et al. Antimony ore tailings: Heavy metals, ChemicalSpeciation, and leaching characteristics [J]. Polish Journal of Environmental Studies, 2018, 28(1): 485-495. doi: 10.15244/pjoes/85006
|
[71] |
HU X Y, HE M C, LI S S, et al. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China [J]. Journal of Geochemical Exploration, 2017, 176: 76-84. doi: 10.1016/j.gexplo.2016.01.009
|
[72] |
CUI X W, GENG Y, LI T, et al. Field application and effect evaluation of different iron tailings soil utilization technologies [J]. Resources, Conservation and Recycling, 2021, 173: 105746. doi: 10.1016/j.resconrec.2021.105746
|
[73] |
WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings [J]. Chemosphere, 2017, 184: 594-600. doi: 10.1016/j.chemosphere.2017.06.025
|
[74] |
YI Z J, ZHAO C H. Desert “soilization”: An eco-mechanical solution to desertification [J]. Engineering, 2016, 2(3): 270-273. doi: 10.1016/J.ENG.2016.03.002
|
[75] |
KAUR R, SHARMA S, KAUR H. Heavy metals toxicity and the environment [J]. Journal of Pharmacognosy and Phytochemistry, 2019: 247-249.
|
[76] |
MA Y, OLIVEIRA R S, FREITAS H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation [J]. Frontiers in Plant Science, 2016, 7: 918.
|
[77] |
MISHRA J, SINGH R, ARORA N K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms [J]. Frontiers in Microbiology, 2017, 8: 1706. doi: 10.3389/fmicb.2017.01706
|
[78] |
TRIPPE K M, MANNING V A, REARDON C L, et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? [J]. Applied Soil Ecology, 2021, 165: 103962. doi: 10.1016/j.apsoil.2021.103962
|
[79] |
XING L, WEN J, YAN C Y, et al. Improving the microenvironment of Cd-contaminated River sediments through humic substances washing and zeolite immobilization [J]. Process Safety and Environmental Protection, 2021, 146: 779-788. doi: 10.1016/j.psep.2020.12.024
|
[80] |
XIAO E Z, NING Z P, XIAO T F, et al. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump [J]. Environmental Pollution, 2019, 253: 141-151. doi: 10.1016/j.envpol.2019.06.097
|
[81] |
ZHAN J, SUN Q Y. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration [J]. Journal of Environmental Sciences, 2011, 23(3): 476-487. doi: 10.1016/S1001-0742(10)60433-0
|
[82] |
刘广容, 叶春松, 钱勤, 等. 电动生物修复底泥中电场对微生物活性的影响 [J]. 武汉大学学报(理学版), 2011, 57(1): 47-51.
LIU G R, YE C S, QIAN Q, et al. Effects of electrokinetic bioremediation of electric field on sediment microbial activity [J]. Journal of Wuhan University (Natural Science Edition), 2011, 57(1): 47-51(in Chinese).
|
[83] |
LI F M, GUO S H, WANG S, et al. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil [J]. Chemosphere, 2020, 254: 126880. doi: 10.1016/j.chemosphere.2020.126880
|
[84] |
HARTL M, BEDOYA-RÍOS D F, FERNÁNDEZ-GATELL M, et al. Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells [J]. Science of the Total Environment, 2019, 652: 1195-1208. doi: 10.1016/j.scitotenv.2018.10.234
|
[85] |
范瑞娟, 马艳, 张琇, 等. 芘污染盐碱土壤微生物-电动修复效率影响因素 [J]. 中国环境科学, 2021, 41(2): 801-812. doi: 10.3969/j.issn.1000-6923.2021.02.035
FAN R J, MA Y, ZHANG X, et al. Factors affecting bio-electrokinetic remediation efficiency of pyrene contaminated saline-alkali soil [J]. China Environmental Science, 2021, 41(2): 801-812(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.02.035
|
[86] |
ALSHAWABKEH A N, MAILLACHERUVU K. Electrochemical and biogeochemical interactions under dc electric fields[M]//Physicochemical Groundwater Remediation. Boston: Kluwer Academic Publishers, 2005: 73-90.
|
[87] |
范瑞娟, 郭书海, 李凤梅, 等. 二维电场中微生物群落动态及混合有机物降解特征 [J]. 环境科学学报, 2017, 37(9): 3543-3552.
FAN R J, GUO S H, LI F M, et al. Dynamics of microbial community and degradation characteristics of mixed organics in a 2-dimensional electric field [J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3543-3552(in Chinese).
|
[88] |
ZAIDI N S, SOHAILI J, MUDA K, et al. Magnetic field application and its potential in water and wastewater treatment systems [J]. Separation & Purification Reviews, 2014, 43(3): 206-240.
|
[89] |
QU M M, CHEN J M, HUANG Q Q, et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields [J]. International Biodeterioration & Biodegradation, 2018, 128: 41-47.
|
[90] |
MCLEAN M, ENGSTRÖM S, HOLCOMB R. Static magnetic fields for the treatment of pain [J]. Epilepsy & Behavior, 2001, 2(3): S74-S80.
|
[91] |
LYU W L, SONG Q, SHI J, et al. Weak magnetic field affected microbial communities and function in the A/O/a sequencing batch reactors for enhanced aerobic granulation [J]. Separation and Purification Technology, 2021, 266: 118537. doi: 10.1016/j.seppur.2021.118537
|
[92] |
LI M Q, ZHANG J, LIANG S, et al. Novel magnetic coupling constructed wetland for nitrogen removal: Enhancing performance and responses of plants and microbial communities [J]. Science of the Total Environment, 2022, 819: 152040. doi: 10.1016/j.scitotenv.2021.152040
|
[93] |
XU D, JI H M, REN H Q, et al. Inhibition effect of magnetic field on nitrous oxide emission from sequencing batch reactor treating domestic wastewater at low temperature [J]. Journal of Environmental Sciences (China), 2020, 87: 205-212. doi: 10.1016/j.jes.2019.05.014
|
[94] |
NIU C, LIANG W H, REN H Q, et al. Enhancement of activated sludge activity by 10-50 mT static magnetic field intensity at low temperature [J]. Bioresource Technology, 2014, 159: 48-54. doi: 10.1016/j.biortech.2014.01.131
|
[95] |
张吉先, 俞劲炎. 磁场对土壤微生物和酶活性的影响 [J]. 土壤通报, 1999, 30(1): 26-28. doi: 10.3321/j.issn:0564-3945.1999.01.008
ZHANG J X, YU J Y. Effect of magnetic field on soil microorganism and enzyme activity [J]. Chinese Journal of Soil Science, 1999, 30(1): 26-28(in Chinese). doi: 10.3321/j.issn:0564-3945.1999.01.008
|
[96] |
XU Y B, HOU M Y, RUAN J J, et al. Effect of magnetic field on surface properties of Bacillus cereus CrA and its Extracellular Polymeric Substances (EPS) [J]. Journal of Adhesion Science and Technology, 2014, 28(21): 2196-2208. doi: 10.1080/01694243.2014.951303
|
[97] |
栗杰, 依艳丽, 贺忠科, 等. 磁处理棕壤对土壤中几种细菌的影响 [J]. 土壤通报, 2009, 40(6): 1262-1265.
LI J, YI Y L, HE Z K, et al. Effects of magnetic treatment on some soil microbial activities in brown earth [J]. Chinese Journal of Soil Science, 2009, 40(6): 1262-1265(in Chinese).
|
[98] |
FLORES M R, ORDOÑEZ O F, MALDONADO M J, et al. Isolation of UV-B resistant bacteria from two high altitude Andean Lakes (4, 400 m) with saline and non saline conditions [J]. The Journal of General and Applied Microbiology, 2009, 55(6): 447-458. doi: 10.2323/jgam.55.447
|
[99] |
SINGH O V, GABANI P. Extremophiles: Radiation resistance microbial reserves and therapeutic implications [J]. Journal of Applied Microbiology, 2011, 110(4): 851-861. doi: 10.1111/j.1365-2672.2011.04971.x
|
[100] |
GABANI P, PRAKASH D, SINGH O V. Bio-signature of ultraviolet-radiation-resistant extremophiles from elevated land [J]. American Journal of Microbiological Research, 2014, 2(3): 94-104. doi: 10.12691/ajmr-2-3-3
|