[1] |
LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: past, present, and future [J]. Environmental Science & Technology, 2011, 45(19): 7954-7961.
|
[2] |
PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates [J]. Environmental Science & Technology, 2006, 40(1): 32-44.
|
[3] |
GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
|
[4] |
ARMITAGE J, COUSINS I T, BUCK R C, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources [J]. Environmental Science & Technology, 2006, 40(22): 6969-6975.
|
[5] |
杨琳, 李敬光. 全氟化合物前体物质生物转化与毒性研究进展 [J]. 环境化学, 2015, 34(4): 649-655. doi: 10.7524/j.issn.0254-6108.2015.04.2014091803
YANG L, LI J G. Perfluorinated compound precursors: Biotransformation and toxicity [J]. Environmental Chemistry, 2015, 34(4): 649-655(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014091803
|
[6] |
ZENG H C, ZHANG L, LI Y Y, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure [J]. NeuroToxicology, 2011, 32(1): 130-139. doi: 10.1016/j.neuro.2010.10.001
|
[7] |
杨兰琴, 冯雷雨, 陈银广. 中国水环境中全氟化合物的污染水平及控制策略 [J]. 化工进展, 2012, 31(10): 2304-2312. doi: 10.16085/j.issn.1000-6613.2012.10.037
YANG L Q, FENG L Y, CHEN Y G. Pollution status and control strategies of perfluorinated compounds in water environments over China: A review [J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2304-2312(in Chinese). doi: 10.16085/j.issn.1000-6613.2012.10.037
|
[8] |
ZHANG L, LIU J G, HU J X, et al. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China [J]. Environmental Pollution, 2012, 165: 193-198. doi: 10.1016/j.envpol.2011.09.001
|
[9] |
BAI X L, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA [J]. Science of the Total Environment, 2021, 751: 141622. doi: 10.1016/j.scitotenv.2020.141622
|
[10] |
STRÓŻYŃSKA M, SCHUHEN K. Dispersive solid-phase extraction followed by triethylsilyl derivatization and gas chromatography mass spectrometry for perfluorocarboxylic acids determination in water samples [J]. Journal of Chromatography A, 2019, 1597: 1-8. doi: 10.1016/j.chroma.2019.03.008
|
[11] |
SHI Y L, PAN Y Y, LIANG L N, et al. An on-line solid phase extraction-liquid chromatography tandem mass spectrometry method for the determination of perfluoroalkyl substances in the Antarctic ice core samples [J]. Chinese Chemical Letters, 2015, 26(9): 1073-1078. doi: 10.1016/j.cclet.2015.05.038
|
[12] |
李鑫, 陈军辉, 程红艳, 等. 近岸海水中全氟化合物的液相色谱-离子阱质谱法测定 [J]. 环境化学, 2012, 31(6): 896-901.
LI X, CHEN J H, CHENG H Y, et al. Simultaneous determination of common perfluorinated compounds in coastal seawater by liquid chromatography-ion trap mass spectrometry [J]. Environmental Chemistry, 2012, 31(6): 896-901(in Chinese).
|
[13] |
HUANG Y F, ZHANG W H, BAI M D, et al. One-pot fabrication of magnetic fluorinated carbon nanotubes adsorbent for efficient extraction of perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids in environmental water samples [J]. Chemical Engineering Journal, 2020, 380: 122392. doi: 10.1016/j.cej.2019.122392
|
[14] |
TROJANOWICZ M, KOC M. Recent developments in methods for analysis of perfluorinated persistent pollutants [J]. Microchim Acta, 2013, 180(11): 957-971.
|
[15] |
ROSENBLUM L, WENDELKEN S C. Method 533: Determination of per-and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry[S]. U. S. Environmental Protection Agency, Office of Ground Water and Drinking Water, Cincinnati, OH, 2019.
|
[16] |
SHOEMAKER J A, GRIMMETT P E, BOUTIN B K. Method 537: Determination of selected per-and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)[S]. U. S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Washington, D. C. , 2009.
|
[17] |
SHOEMAKER J A, TETTENHORST D R. Method 537.1: Determination of selected per-and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)[S]. U. S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, D. C. , 2020.
|
[18] |
HERNÁNDEZ-RODRÍGUEZ J F, ROJAS D, ESCARPA A. Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers [J]. Analytical Chemistry, 2021, 93(1): 167-183. doi: 10.1021/acs.analchem.0c04378
|
[19] |
KARIMIAN N, STORTINI A M, MORETTO L M, et al. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly(o-phenylenediamine) polymer [J]. ACS Sensors, 2018, 3(7): 1291-1298. doi: 10.1021/acssensors.8b00154
|
[20] |
FANG C, CHEN Z L, MEGHARAJ M, et al. Potentiometric detection of AFFFs based on MIP [J]. Environmental Technology & Innovation, 2016, 5: 52-59.
|
[21] |
CHENG Y H, BARPAGA D, SOLTIS J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10503-10514.
|
[22] |
TRAN T T, LI J Z, FENG H, et al. Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (PFOS) [J]. Sensors and Actuators B:Chemical, 2014, 190: 745-751. doi: 10.1016/j.snb.2013.09.048
|
[23] |
CHEN S H, LI A M, ZHANG L Z, et al. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid [J]. Analytica Chimica Acta, 2015, 896: 68-77. doi: 10.1016/j.aca.2015.09.022
|
[24] |
CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications [J]. Chemical Society Reviews, 2011, 40(5): 2922-2942. doi: 10.1039/c0cs00084a
|
[25] |
LU D N, ZHU D Z, GAN H H, et al. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water [J]. Sensors and Actuators B:Chemical, 2022, 352: 131055. doi: 10.1016/j.snb.2021.131055
|
[26] |
GONG J M, FANG T, PENG D H, et al. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite [J]. Biosensors and Bioelectronics, 2015, 73: 256-263. doi: 10.1016/j.bios.2015.06.008
|
[27] |
LI X, WANG X L, FANG T, et al. Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode [J]. Talanta, 2018, 181: 147-153. doi: 10.1016/j.talanta.2018.01.005
|
[28] |
LIU B, ZHUANG J Y, WEI G. Recent advances in the design of colorimetric sensors for environmental monitoring [J]. Environmental Science:Nano, 2020, 7(8): 2195-2213. doi: 10.1039/D0EN00449A
|
[29] |
TAKAYOSE M, AKAMATSU K, NAWAFUNE H, et al. Colorimetric detection of perfluorooctanoic acid (PFOA) utilizing polystyrene-modified gold nanoparticles [J]. Analytical Letters, 2012, 45(18): 2856-2864. doi: 10.1080/00032719.2012.696225
|
[30] |
NIU H Y, WANG S H, ZHOU Z, et al. Sensitive colorimetric visualization of perfluorinated compounds using poly(ethylene glycol) and perfluorinated thiols modified gold nanoparticles [J]. Analytical Chemistry, 2014, 86(9): 4170-4177. doi: 10.1021/ac403406d
|
[31] |
LIU J, DU J Y, SU Y, et al. A facile solvothermal synthesis of 3D magnetic MoS2/Fe3O4 nanocomposites with enhanced peroxidase-mimicking activity and colorimetric detection of perfluorooctane sulfonate [J]. Microchemical Journal, 2019, 149: 104019. doi: 10.1016/j.microc.2019.104019
|
[32] |
CHENG Z, ZHANG F, CHEN X P, et al. Highly sensitive and selective detection of perfluorooctane sulfonate based on the Janus Green B resonance light scattering method [J]. Analytical Methods, 2016, 8(45): 8042-8048. doi: 10.1039/C6AY02739C
|
[33] |
ZHANG F, ZHENG Y H, LIANG J M, et al. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 159: 7-12. doi: 10.1016/j.saa.2016.01.010
|
[34] |
陈现平, 陶艺, 吴飞, 等. 维多利亚蓝B共振光散射法高灵敏选择性检测全氟辛烷磺酸 [J]. 光谱学与光谱分析, 2017, 37(3): 811-815.
CHEN X P, TAO Y, WU F, et al. High sensitive and selective detection of PFOS with resonance light scattering technology based on interaction with Volatile Blue B [J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 811-815(in Chinese).
|
[35] |
GAO M, TANG B Z. Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives [J]. ACS Sensors, 2017, 2(10): 1382-1399. doi: 10.1021/acssensors.7b00551
|
[36] |
GUO Z, CHEN G Q, ZENG G M, et al. Fluorescence chemosensors for hydrogen sulfide detection in biological systems [J]. Analyst, 2015, 140(6): 1772-1786. doi: 10.1039/C4AN01909A
|
[37] |
LIU J, SUN Y Q, ZHANG H X, et al. Sulfone-rhodamines: a new class of near-infrared fluorescent dyes for bioimaging [J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22953-22962.
|
[38] |
HE L W, LIN W Y, XU Q Y, et al. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells [J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22326-22333.
|
[39] |
CHENG Z, DU L L, ZHU P P, et al. An erythrosin B-based “turn on” fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 201: 281-287. doi: 10.1016/j.saa.2018.05.013
|
[40] |
HE J C, SU Y Y, SUN Z J, et al. A chitosan-mediated “turn-on” strategy for rapid fluorometric detection of perfluorooctane sulfonate [J]. Microchemical Journal, 2020, 157: 105030. doi: 10.1016/j.microc.2020.105030
|
[41] |
LIANG J M, DENG X Y, TAN K J. An eosin Y-based “turn-on” fluorescent sensor for detection of perfluorooctane sulfonate [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 150: 772-777. doi: 10.1016/j.saa.2015.05.069
|
[42] |
ZHANG Q J, LIAO M Y, XIAO K R, et al. A water-soluble fluorescence probe based on perylene diimide for rapid and selective detection of perfluorooctane sulfonate in 100% aqueous media [J]. Sensors and Actuators B:Chemical, 2022, 350: 130851. doi: 10.1016/j.snb.2021.130851
|
[43] |
FENG H, WANG N Y, TRAN T T, et al. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate [J]. Sensors and Actuators B:Chemical, 2014, 195: 266-273. doi: 10.1016/j.snb.2014.01.036
|
[44] |
BAILEY R E, NIE S M. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size [J]. Journal of the American Chemical Society, 2003, 125(23): 7100-7106. doi: 10.1021/ja035000o
|
[45] |
FARIAS P M A, SANTOS B S, THOMAZ A A, et al. Fluorescent II-VI semiconductor quantum dots in living cells: nonlinear microspectroscopy in an optical tweezers system [J]. The Journal of Physical Chemistry B, 2008, 112(9): 2734-2737. doi: 10.1021/jp0758465
|
[46] |
LIU Q, HUANG A Z, WANG N, et al. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots [J]. Journal of Luminescence, 2015, 161: 374-381. doi: 10.1016/j.jlumin.2015.01.045
|
[47] |
ZHANG F, LIANG J M, LIU Y, et al. A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 269: 120753. doi: 10.1016/j.saa.2021.120753
|
[48] |
ZHENG L, ZHENG Y H, LIU Y, et al. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid [J]. Talanta, 2019, 194: 1-6. doi: 10.1016/j.talanta.2018.09.106
|
[49] |
DEVI P, THAKUR A, CHOPRA S, et al. Ultrasensitive and selective sensing of selenium using nitrogen-rich ligand interfaced carbon quantum dots [J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13448-13456.
|
[50] |
PANDA S, JADAV A, PANDA N, et al. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples [J]. New Journal of Chemistry, 2018, 42(3): 2074-2080. doi: 10.1039/C7NJ04358A
|
[51] |
CHENG Z, DONG H C, LIANG J M, et al. Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 207: 262-269. doi: 10.1016/j.saa.2018.09.028
|
[52] |
CHEN Q, ZHU P P, XIONG J, et al. A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS [J]. Microchemical Journal, 2019, 145: 388-396. doi: 10.1016/j.microc.2018.11.003
|
[53] |
CHEN Q, ZHU P P, XIONG J, et al. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 224: 117362. doi: 10.1016/j.saa.2019.117362
|
[54] |
ZHANG L L, KANG Z X, XIN X L, et al. Metal-organic frameworks based luminescent materials for nitroaromatics sensing [J]. CrystEngComm, 2016, 18(2): 193-206. doi: 10.1039/C5CE01917F
|
[55] |
TIAN D, LIU X J, FENG R, et al. Microporous luminescent metal-organic framework for a sensitive and selective fluorescence sensing of toxic mycotoxin in moldy sugarcane [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5618-5625.
|
[56] |
CHEN B N, YANG Z S, QU X L, et al. Screening and discrimination of perfluoroalkyl substances in aqueous solution using a luminescent metal-organic framework sensor array [J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47706-47716.
|
[57] |
WILHELM S. Perspectives for upconverting nanoparticles [J]. ACS Nano, 2017, 11(11): 10644-10653. doi: 10.1021/acsnano.7b07120
|
[58] |
CHENG T, MARIN R, SKRIPKA A, et al. Small and bright lithium-based upconverting nanoparticles [J]. Journal of the American Chemical Society, 2018, 140(40): 12890-12899. doi: 10.1021/jacs.8b07086
|
[59] |
LI J, ZHANG C Y, YIN M Y, et al. Surfactant-sensitized covalent organic frameworks-functionalized lanthanide-doped nanocrystals: an ultrasensitive sensing platform for perfluorooctane sulfonate [J]. ACS Omega, 2019, 4(14): 15947-15955. doi: 10.1021/acsomega.9b01996
|
[60] |
YIN M Y, CHE L H, JIANG S Z, et al. Sensing of perfluorinated compounds using a functionalized tricolor upconversion nanoparticle based fluorescence sensor array [J]. Environmental Science:Nano, 2020, 7(10): 3036-3046. doi: 10.1039/D0EN00554A
|
[61] |
TIAN L X, GUO H Q, LI J, et al. Fabrication of a near-infrared excitation surface molecular imprinting ratiometric fluorescent probe for sensitive and rapid detecting perfluorooctane sulfonate in complex matrix [J]. Journal of Hazardous Materials, 2021, 413: 125353. doi: 10.1016/j.jhazmat.2021.125353
|