-
全氟化合物(PFCs)是一类人工合成的烷烃类有机化合物,其烷烃链上的氢原子全部被氟原子取代,并在烷烃链的末端带有亲水性官能团. 因此它们既具有疏水性,又具有疏油性,呈现出良好的表面活性[1]. 在生产生活的多个领域中获得了广泛应用,如食品包装袋、不粘锅厨具、洗涤剂、防油处理剂、电镀添加剂和泡沫灭火剂等[2]. PFCs的种类多达上千种,全氟辛烷羧酸(PFOA)和全氟辛烷磺酸(PFOS)是产量最大、应用最广泛、最具有代表性的PFCs,也是多种PFCs在环境中的最终转化产物[3-4]. 通过对PFCs的环境行为研究发现,它们具有环境持久性、难降解性、远距离迁移性和生物蓄积性[5-6]. 并且由于PFCs的极性和水溶性较好,其在水环境中的污染较为严重,污染分布范围非常广泛,在多种环境水体以及自来水、饮用水中均有检出,对水生态环境和人体健康造成了巨大威胁[7-8]. 由于PFOA和PFOS的广泛检出和潜在风险,2009年美国环境保护署(EPA)颁布了饮用水中PFOS和PFOA的短期健康建议值分别为200 ng·L−1和400 ng·L−1,2016年EPA将该值均修改为70 ng·L−1[9]. 2022年我国最新发布的《生活饮用水卫生标准》(GB5749-2022)中增加了对PFOA和PFOS的标准限值分别为80 ng·L−1和40 ng·L−1. 因此及时开展水环境中PFCs的污染检测非常必要,可以为环境污染预警和治理修复提供重要的技术支持.
目前,对于PFCs检测的方法主要是采用基于色谱-质谱联用的传统分析方法,包括气相色谱-质谱联用(GC-MS)[10]、液相色谱-质谱联用(LC-MS)[11]和液相色谱-串联质谱(LC-MS/MS)[12-13]方法,Trojanowicz等[14]对这些方法的研究进展已经进行了综述报道. 美国EPA颁布了3种标准分析方法用于PFCs检测,包括方法533、537和537.1[15-17]. 在这些方法中,首先采用固相萃取技术对样品进行富集浓缩,然后使用LC-MS/MS方法进行检测,检测限可以达到ng·L−1. 虽然色谱-质谱联用技术已经实现了高灵敏检测,但是需要将采集的样品运送至实验室进行多步预处理,检测周期较长,所用的仪器精密昂贵,需要专业的技术人员进行维护使用,检测成本较高,不具有现场检测的应用能力. 因此,为了提高检测效率,降低检测成本,实现批量样品的快速筛查,建立更简便、快速、经济有效的方法对PFCs进行检测是非常必要的.
近年来,电化学传感和光学传感研究获得了快速发展,通过建立电信号或光信号的变化与待测目标物浓度之间的相关性,可以实现对目标物的定性或定量检测. 与色谱-质谱方法相比,传感技术具有简便、快速、仪器成本低、易操作的优点,一些研究者致力于将其用于PFCs检测. 在电化学传感中,主要是通过对电极表面进行修饰改性,使PFCs吸附到界面处时,可以导致电位、电流、电阻等多种电信号发生改变,实现对PFCs的定量分析. 采用不同的电极材料或修饰方法,可以对电化学传感的灵敏度和稳定性产生较大影响. 在光学传感中,采用多种功能化的光学材料作为信号探针,与PFCs发生相互作用后,可以导致吸收、散射、荧光等多种光信号发生改变,实现对PFCs的识别检测. 不同的光学材料与PFCs的作用方式不同,是影响方法灵敏度和选择性的重要因素. 近年来,通过改变电极或光学探针,建立了多种电化学和光学传感方法用于对水环境中PFCs的检测研究,并取得了显著的效果. 而目前对PFCs的传感检测方法研究进展报道较少,因此本论文通过对电化学和光学传感方法的检测原理和研究进展进行综述讨论,并对PFCs的传感检测方法研究趋势和应用前景进行展望,以期望能够为PFCs的快速检测技术研究提供重要的参考.
水环境中全氟化合物的传感检测方法研究进展
Research progress on sensing methods for the detection of perfluorinated compounds in water environment
-
摘要: 全氟化合物(PFCs)作为一类新型的持久性有机污染物,可以对环境和人体健康造成巨大的危害效应. 尤其在水环境中PFCs污染较为严重,污染分布范围广泛,使饮用水安全存在较大风险. 建立有效的分析方法对水环境中的PFCs污染水平进行及时检测是非常必要的. 虽然采用色谱-质谱联用技术已经实现了对PFCs的高灵敏检测,但是检测周期较长,检测成本较高. 为了解决该问题,近年来,电化学和光学传感方法逐渐被研究用于水环境中PFCs的检测. 传感方法可以提高对PFCs检测的便捷性,降低检测成本,并具有现场检测的应用潜力. 本文主要对电化学和光学传感方法在PFCs检测中的研究进展进行了综述,并对未来的研究趋势进行了预测和展望,希望可为水环境中PFCs的快速检测技术研究提供参考.Abstract: As a new type of persistent organic pollutants, perfluorinated compounds (PFCs) can cause great harm to the environment and human health. Especially, the pollution of PFCs is more serious in water environment, which is widely distributed and makes a great risk to the safety of drinking water. It is very necessary to establish the effective analytical methods to detect the pollution level of PFCs in water environment in time. Although the highly sensitive detection of PFCs has been realized by chromatography-mass spectrometry, it takes a long time and high cost. To solve this problem, electrochemical and optical sensing methods have been gradually investigated for the detection of PFCs in water environment in recent years. Sensing methods can improve the convenience of detection of PFCs, reduce the detection cost, and have the application potential of on-site detection. In this review, we mainly summarize the research progress of electrochemical and optical sensing methods in the detection of PFCs, and forecast and prospect the future research trends, which can provide a reference for the rapid detection technology research of PFCs in water environment.
-
表 1 用于PFCs检测的电化学传感方法
Table 1. Electrochemical sensing methods for the detection of PFCs
电化学传感
Electrochemical sensing分析物
Analyte检测限/(μg·L−1)
Limit of detection样品
Sample加标回收率/%
Spike recovery参考文献
References伏安法
VoltammetryPFOS 0.02 蒸馏水、自来水、矿泉水 82—110 [19] PFOS 7.5×10−3 去离子水、自来水 85.5—93.0 [25] 电位法
PotentiometryPFOA
PFOS
6:2FTS41 — — [20] 阻抗法
ImpedimetricPFOS 5×10−4 — — [21] 光电化学法
PhotoelectrochemistryPFOS 86 自来水、湘江河流水、岳麓山水 95.81—117.83 [22] PFOA 0.01 自来水、长江水 98.2—102.4 [26] PFOSF 0.01 自来水、长江水、东湖水 92.5—100.5 [27] 电化学发光法
ElectrochemiluminescencePFOA 0.01 自来水、长江水、东湖水 96.9—103.8 [23] 表 2 用于PFCs检测的光学传感方法
Table 2. Optical sensing methods for the detection of PFCs
光学传感
Optical sensing探针
Probe分析物
Analyte检测限/(μg·L−1)
Limit of detection样品
Sample加标回收率/%
Spike recovery参考文献
References比色法
Colorimetric金颗粒 PFOA 1.04×105 — — [29] 金颗粒 PFBS
PFHxS
PFHpA
PFCs
(F7-F17)10 自来水
河流水PFOS:
115±12
85±10[30] TMB PFOS 4.3 — — [31] 共振光散射法
Resonant light scattering健那绿B PFOS 2.8 自来水
嘉陵江水91—104 [32] 结晶紫 PFOA 4.55 自来水
嘉陵江水91.36—104.80 [33] 维多利亚蓝B PFOS 2.5 自来水
嘉陵江水91.8—106.3 [34] 荧光法
Fluorescence赤藓红B PFOS
PFOAPFOS: 6.4
PFOA: 4.9自来水
嘉陵江水PFOS:
93.5—106.5
PFOA:
91.5—107.0[39] 8-羟基芘-1,3,6-三磺酸三钠(HPTS) PFOS 0.5 珠江河水
海珠湖水90.8—102 [40] 伊红Y PFOS 7.5 自来水
嘉陵江水97.4—105.1 [41] 阳离子苝二酰亚胺衍生物(PDI-Pyr) PFOS 14 自来水
土壤提取物— [42] 异硫氰酸荧光素掺杂的印迹探针 PFOS 5.57 自来水
湘江水95.7—101 [43] CdS量子点 PFOA 124.22 纺织品
悬浮液95—113 [46] CdTe量子点 PFOA
PFOSPFOA: 0.013
PFOS: 0.022自来水
嘉陵江水PFOA:
99—106.3
PFOS:
98.3—107.3[47] CdTe@CdS
量子点PFOA 10.4 自来水
嘉陵江水91—107 [48] 蓝色荧光碳点 PFOS 10.85 自来水
嘉陵江水91.6—99.6 [51] 红色荧光碳点 PFOS 9.14 自来水
嘉陵江水97.9—104.8 [52] 氮掺杂的碳点 PFOS 13.9 自来水
嘉陵江水90.15—101.44 [53] 锆卟啉LMOFs PFOS
PFDA
PFNA
PFOA
PFHpA
PFHxAPFOS: 36
PFDA: 45
PFNA: 47
PFOA: 46
PFHpA: 44太湖水
地下水— [56] UCNPs@COFs PFOS 7.5×10−5 自来水
塑料瓶106—108
103—104[59] UCNPs@SiO2-F PFDA
PFNA
PFOA
PFHpA PFHxA
PFOS
PFHxSPFOS: 2.15 自来水
地表海水
河流水
塑料瓶— [60] UCNPs-SiO2@MIP PFOS 5×10−4 鄱阳湖水
人血清
鸡蛋70.6—106 [61] -
[1] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: past, present, and future [J]. Environmental Science & Technology, 2011, 45(19): 7954-7961. [2] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates [J]. Environmental Science & Technology, 2006, 40(1): 32-44. [3] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [4] ARMITAGE J, COUSINS I T, BUCK R C, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources [J]. Environmental Science & Technology, 2006, 40(22): 6969-6975. [5] 杨琳, 李敬光. 全氟化合物前体物质生物转化与毒性研究进展 [J]. 环境化学, 2015, 34(4): 649-655. doi: 10.7524/j.issn.0254-6108.2015.04.2014091803 YANG L, LI J G. Perfluorinated compound precursors: Biotransformation and toxicity [J]. Environmental Chemistry, 2015, 34(4): 649-655(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.04.2014091803
[6] ZENG H C, ZHANG L, LI Y Y, et al. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure [J]. NeuroToxicology, 2011, 32(1): 130-139. doi: 10.1016/j.neuro.2010.10.001 [7] 杨兰琴, 冯雷雨, 陈银广. 中国水环境中全氟化合物的污染水平及控制策略 [J]. 化工进展, 2012, 31(10): 2304-2312. doi: 10.16085/j.issn.1000-6613.2012.10.037 YANG L Q, FENG L Y, CHEN Y G. Pollution status and control strategies of perfluorinated compounds in water environments over China: A review [J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2304-2312(in Chinese). doi: 10.16085/j.issn.1000-6613.2012.10.037
[8] ZHANG L, LIU J G, HU J X, et al. The inventory of sources, environmental releases and risk assessment for perfluorooctane sulfonate in China [J]. Environmental Pollution, 2012, 165: 193-198. doi: 10.1016/j.envpol.2011.09.001 [9] BAI X L, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA [J]. Science of the Total Environment, 2021, 751: 141622. doi: 10.1016/j.scitotenv.2020.141622 [10] STRÓŻYŃSKA M, SCHUHEN K. Dispersive solid-phase extraction followed by triethylsilyl derivatization and gas chromatography mass spectrometry for perfluorocarboxylic acids determination in water samples [J]. Journal of Chromatography A, 2019, 1597: 1-8. doi: 10.1016/j.chroma.2019.03.008 [11] SHI Y L, PAN Y Y, LIANG L N, et al. An on-line solid phase extraction-liquid chromatography tandem mass spectrometry method for the determination of perfluoroalkyl substances in the Antarctic ice core samples [J]. Chinese Chemical Letters, 2015, 26(9): 1073-1078. doi: 10.1016/j.cclet.2015.05.038 [12] 李鑫, 陈军辉, 程红艳, 等. 近岸海水中全氟化合物的液相色谱-离子阱质谱法测定 [J]. 环境化学, 2012, 31(6): 896-901. LI X, CHEN J H, CHENG H Y, et al. Simultaneous determination of common perfluorinated compounds in coastal seawater by liquid chromatography-ion trap mass spectrometry [J]. Environmental Chemistry, 2012, 31(6): 896-901(in Chinese).
[13] HUANG Y F, ZHANG W H, BAI M D, et al. One-pot fabrication of magnetic fluorinated carbon nanotubes adsorbent for efficient extraction of perfluoroalkyl carboxylic acids and perfluoroalkyl sulfonic acids in environmental water samples [J]. Chemical Engineering Journal, 2020, 380: 122392. doi: 10.1016/j.cej.2019.122392 [14] TROJANOWICZ M, KOC M. Recent developments in methods for analysis of perfluorinated persistent pollutants [J]. Microchim Acta, 2013, 180(11): 957-971. [15] ROSENBLUM L, WENDELKEN S C. Method 533: Determination of per-and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry[S]. U. S. Environmental Protection Agency, Office of Ground Water and Drinking Water, Cincinnati, OH, 2019. [16] SHOEMAKER J A, GRIMMETT P E, BOUTIN B K. Method 537: Determination of selected per-and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)[S]. U. S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Washington, D. C. , 2009. [17] SHOEMAKER J A, TETTENHORST D R. Method 537.1: Determination of selected per-and polyfluorinated alkyl substances in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)[S]. U. S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, D. C. , 2020. [18] HERNÁNDEZ-RODRÍGUEZ J F, ROJAS D, ESCARPA A. Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers [J]. Analytical Chemistry, 2021, 93(1): 167-183. doi: 10.1021/acs.analchem.0c04378 [19] KARIMIAN N, STORTINI A M, MORETTO L M, et al. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly(o-phenylenediamine) polymer [J]. ACS Sensors, 2018, 3(7): 1291-1298. doi: 10.1021/acssensors.8b00154 [20] FANG C, CHEN Z L, MEGHARAJ M, et al. Potentiometric detection of AFFFs based on MIP [J]. Environmental Technology & Innovation, 2016, 5: 52-59. [21] CHENG Y H, BARPAGA D, SOLTIS J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate [J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10503-10514. [22] TRAN T T, LI J Z, FENG H, et al. Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (PFOS) [J]. Sensors and Actuators B:Chemical, 2014, 190: 745-751. doi: 10.1016/j.snb.2013.09.048 [23] CHEN S H, LI A M, ZHANG L Z, et al. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid [J]. Analytica Chimica Acta, 2015, 896: 68-77. doi: 10.1016/j.aca.2015.09.022 [24] CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications [J]. Chemical Society Reviews, 2011, 40(5): 2922-2942. doi: 10.1039/c0cs00084a [25] LU D N, ZHU D Z, GAN H H, et al. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water [J]. Sensors and Actuators B:Chemical, 2022, 352: 131055. doi: 10.1016/j.snb.2021.131055 [26] GONG J M, FANG T, PENG D H, et al. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite [J]. Biosensors and Bioelectronics, 2015, 73: 256-263. doi: 10.1016/j.bios.2015.06.008 [27] LI X, WANG X L, FANG T, et al. Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode [J]. Talanta, 2018, 181: 147-153. doi: 10.1016/j.talanta.2018.01.005 [28] LIU B, ZHUANG J Y, WEI G. Recent advances in the design of colorimetric sensors for environmental monitoring [J]. Environmental Science:Nano, 2020, 7(8): 2195-2213. doi: 10.1039/D0EN00449A [29] TAKAYOSE M, AKAMATSU K, NAWAFUNE H, et al. Colorimetric detection of perfluorooctanoic acid (PFOA) utilizing polystyrene-modified gold nanoparticles [J]. Analytical Letters, 2012, 45(18): 2856-2864. doi: 10.1080/00032719.2012.696225 [30] NIU H Y, WANG S H, ZHOU Z, et al. Sensitive colorimetric visualization of perfluorinated compounds using poly(ethylene glycol) and perfluorinated thiols modified gold nanoparticles [J]. Analytical Chemistry, 2014, 86(9): 4170-4177. doi: 10.1021/ac403406d [31] LIU J, DU J Y, SU Y, et al. A facile solvothermal synthesis of 3D magnetic MoS2/Fe3O4 nanocomposites with enhanced peroxidase-mimicking activity and colorimetric detection of perfluorooctane sulfonate [J]. Microchemical Journal, 2019, 149: 104019. doi: 10.1016/j.microc.2019.104019 [32] CHENG Z, ZHANG F, CHEN X P, et al. Highly sensitive and selective detection of perfluorooctane sulfonate based on the Janus Green B resonance light scattering method [J]. Analytical Methods, 2016, 8(45): 8042-8048. doi: 10.1039/C6AY02739C [33] ZHANG F, ZHENG Y H, LIANG J M, et al. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 159: 7-12. doi: 10.1016/j.saa.2016.01.010 [34] 陈现平, 陶艺, 吴飞, 等. 维多利亚蓝B共振光散射法高灵敏选择性检测全氟辛烷磺酸 [J]. 光谱学与光谱分析, 2017, 37(3): 811-815. CHEN X P, TAO Y, WU F, et al. High sensitive and selective detection of PFOS with resonance light scattering technology based on interaction with Volatile Blue B [J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 811-815(in Chinese).
[35] GAO M, TANG B Z. Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives [J]. ACS Sensors, 2017, 2(10): 1382-1399. doi: 10.1021/acssensors.7b00551 [36] GUO Z, CHEN G Q, ZENG G M, et al. Fluorescence chemosensors for hydrogen sulfide detection in biological systems [J]. Analyst, 2015, 140(6): 1772-1786. doi: 10.1039/C4AN01909A [37] LIU J, SUN Y Q, ZHANG H X, et al. Sulfone-rhodamines: a new class of near-infrared fluorescent dyes for bioimaging [J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22953-22962. [38] HE L W, LIN W Y, XU Q Y, et al. A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells [J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22326-22333. [39] CHENG Z, DU L L, ZHU P P, et al. An erythrosin B-based “turn on” fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 201: 281-287. doi: 10.1016/j.saa.2018.05.013 [40] HE J C, SU Y Y, SUN Z J, et al. A chitosan-mediated “turn-on” strategy for rapid fluorometric detection of perfluorooctane sulfonate [J]. Microchemical Journal, 2020, 157: 105030. doi: 10.1016/j.microc.2020.105030 [41] LIANG J M, DENG X Y, TAN K J. An eosin Y-based “turn-on” fluorescent sensor for detection of perfluorooctane sulfonate [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 150: 772-777. doi: 10.1016/j.saa.2015.05.069 [42] ZHANG Q J, LIAO M Y, XIAO K R, et al. A water-soluble fluorescence probe based on perylene diimide for rapid and selective detection of perfluorooctane sulfonate in 100% aqueous media [J]. Sensors and Actuators B:Chemical, 2022, 350: 130851. doi: 10.1016/j.snb.2021.130851 [43] FENG H, WANG N Y, TRAN T T, et al. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate [J]. Sensors and Actuators B:Chemical, 2014, 195: 266-273. doi: 10.1016/j.snb.2014.01.036 [44] BAILEY R E, NIE S M. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size [J]. Journal of the American Chemical Society, 2003, 125(23): 7100-7106. doi: 10.1021/ja035000o [45] FARIAS P M A, SANTOS B S, THOMAZ A A, et al. Fluorescent II-VI semiconductor quantum dots in living cells: nonlinear microspectroscopy in an optical tweezers system [J]. The Journal of Physical Chemistry B, 2008, 112(9): 2734-2737. doi: 10.1021/jp0758465 [46] LIU Q, HUANG A Z, WANG N, et al. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots [J]. Journal of Luminescence, 2015, 161: 374-381. doi: 10.1016/j.jlumin.2015.01.045 [47] ZHANG F, LIANG J M, LIU Y, et al. A highly sensitive dual-readout assay for perfluorinated compounds based CdTe quantum dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 269: 120753. doi: 10.1016/j.saa.2021.120753 [48] ZHENG L, ZHENG Y H, LIU Y, et al. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid [J]. Talanta, 2019, 194: 1-6. doi: 10.1016/j.talanta.2018.09.106 [49] DEVI P, THAKUR A, CHOPRA S, et al. Ultrasensitive and selective sensing of selenium using nitrogen-rich ligand interfaced carbon quantum dots [J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13448-13456. [50] PANDA S, JADAV A, PANDA N, et al. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples [J]. New Journal of Chemistry, 2018, 42(3): 2074-2080. doi: 10.1039/C7NJ04358A [51] CHENG Z, DONG H C, LIANG J M, et al. Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 207: 262-269. doi: 10.1016/j.saa.2018.09.028 [52] CHEN Q, ZHU P P, XIONG J, et al. A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS [J]. Microchemical Journal, 2019, 145: 388-396. doi: 10.1016/j.microc.2018.11.003 [53] CHEN Q, ZHU P P, XIONG J, et al. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 224: 117362. doi: 10.1016/j.saa.2019.117362 [54] ZHANG L L, KANG Z X, XIN X L, et al. Metal-organic frameworks based luminescent materials for nitroaromatics sensing [J]. CrystEngComm, 2016, 18(2): 193-206. doi: 10.1039/C5CE01917F [55] TIAN D, LIU X J, FENG R, et al. Microporous luminescent metal-organic framework for a sensitive and selective fluorescence sensing of toxic mycotoxin in moldy sugarcane [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5618-5625. [56] CHEN B N, YANG Z S, QU X L, et al. Screening and discrimination of perfluoroalkyl substances in aqueous solution using a luminescent metal-organic framework sensor array [J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47706-47716. [57] WILHELM S. Perspectives for upconverting nanoparticles [J]. ACS Nano, 2017, 11(11): 10644-10653. doi: 10.1021/acsnano.7b07120 [58] CHENG T, MARIN R, SKRIPKA A, et al. Small and bright lithium-based upconverting nanoparticles [J]. Journal of the American Chemical Society, 2018, 140(40): 12890-12899. doi: 10.1021/jacs.8b07086 [59] LI J, ZHANG C Y, YIN M Y, et al. Surfactant-sensitized covalent organic frameworks-functionalized lanthanide-doped nanocrystals: an ultrasensitive sensing platform for perfluorooctane sulfonate [J]. ACS Omega, 2019, 4(14): 15947-15955. doi: 10.1021/acsomega.9b01996 [60] YIN M Y, CHE L H, JIANG S Z, et al. Sensing of perfluorinated compounds using a functionalized tricolor upconversion nanoparticle based fluorescence sensor array [J]. Environmental Science:Nano, 2020, 7(10): 3036-3046. doi: 10.1039/D0EN00554A [61] TIAN L X, GUO H Q, LI J, et al. Fabrication of a near-infrared excitation surface molecular imprinting ratiometric fluorescent probe for sensitive and rapid detecting perfluorooctane sulfonate in complex matrix [J]. Journal of Hazardous Materials, 2021, 413: 125353. doi: 10.1016/j.jhazmat.2021.125353