[1] BHATTACHARYA A, KHARE S K. Ecological and toxicological manifestations of microplastics: current scenario, research gaps, and possible alleviation measures [J]. Journal of Environmental Science and Health. Part C, Toxicology and Carcinogenesis, 2020, 38(1): 1-20. doi: 10.1080/10590501.2019.1699379
[2] BHAGAT J, NISHIMURA N, SHIMADA Y. Worming into a robust model to unravel the micro/nanoplastic toxicity in soil: A review on Caenorhabditis elegans [J]. TrAC Trends in Analytical Chemistry, 2021, 138: 116235. doi: 10.1016/j.trac.2021.116235
[3] ISSAC M N, KANDASUBRAMANIAN B. Effect of microplastics in water and aquatic systems [J]. Environmental Science and Pollution Research, 2021, 28(16): 19544-19562. doi: 10.1007/s11356-021-13184-2
[4] 丁平, 张丽娟, 黄道建, 等. 微塑料对海洋生物的毒性效应及机理研究进展 [J]. 海洋湖沼通报, 2021, 43(2): 144-153. doi: 10.13984/j.cnki.cn37-1141.2021.02.019 DING P, ZHANG L J, HUANG D J, et al. Toxic effect and mechanism of microplastics on marine organisms [J]. Transactions of Oceanology and Limnology, 2021, 43(2): 144-153(in Chinese). doi: 10.13984/j.cnki.cn37-1141.2021.02.019
[5] 张瑾, 李丹. 环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展 [J]. 环境化学, 2021, 40(1): 28-40. doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2020062003 ZHANG J, LI D. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment [J]. Environmental Chemistry, 2021, 40(1): 28-40(in Chinese). doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2020062003
[6] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482
[7] 赵佳, 饶本强, 郭秀梅, 等. 微塑料对斑马鱼胚胎孵化影响及其在幼鱼肠道中的积累 [J]. 环境科学, 2021, 42(1): 485-491. doi: 10.13227/j.hjkx.202003199 ZHAO J, RAO B Q, GUO X M, et al. Effects of microplastics on embryo hatching and intestinal accumulation in larval zebrafish Danio rerio [J]. Environmental Science, 2021, 42(1): 485-491(in Chinese). doi: 10.13227/j.hjkx.202003199
[8] FUESER H, MUELLER M T, WEISS L, et al. Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size [J]. Environmental Pollution, 2019, 255: 113227. doi: 10.1016/j.envpol.2019.113227
[9] MAO Y F, AI H N, CHEN Y, et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period [J]. Chemosphere, 2018, 208: 59-68. doi: 10.1016/j.chemosphere.2018.05.170
[10] WU T S, XU H S, LIANG X, et al. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles [J]. Chemosphere, 2019, 221: 708-726. doi: 10.1016/j.chemosphere.2019.01.021
[11] CHEN H B, WANG C, LI H, et al. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans [J]. Journal of Environmental Management, 2019, 237: 519-525.
[12] KANG H M, JEONG C B, LEE Y H, et al. Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology [J]. Marine Pollution Bulletin, 2017, 124(2): 614-623. doi: 10.1016/j.marpolbul.2016.11.049
[13] NIGAMATZYANOVA L, FAKHRULLIN R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study [J]. Environmental Pollution, 2021, 271: 116337. doi: 10.1016/j.envpol.2020.116337
[14] RAUCHSCHWALBE M T, FUESER H, TRAUNSPURGER W, et al. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: The roles of food dilution and pharyngeal pumping [J]. Environmental Pollution, 2021, 273: 116471. doi: 10.1016/j.envpol.2021.116471
[15] FUESER H, RAUCHSCHWALBE M T, HÖSS S, et al. Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans [J]. Aquatic Toxicology, 2021, 235: 105827. doi: 10.1016/j.aquatox.2021.105827
[16] YOUSSEF K, ARCHONTA D, KUBISESKI T J, et al. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans [J]. Science of the Total Environment, 2021, 783: 147055. doi: 10.1016/j.scitotenv.2021.147055
[17] CHU Q, ZHANG S, YU X, et al. Fecal microbiota transplantation attenuates nano-plastics induced toxicity in Caenorhabditis elegans [J]. Science of The Total Environment, 2021, 779: 146454. doi: 10.1016/j.scitotenv.2021.146454
[18] FUESER H, MUELLER M T, TRAUNSPURGER W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes [J]. Chemosphere, 2020, 261: 128162. doi: 10.1016/j.chemosphere.2020.128162
[19] ZHAO L, QU M, WONG G, et al. Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode Caenorhabditis elegans [J]. Environmental Science:Nano, 2017, 4(12): 2356-2366. doi: 10.1039/C7EN00707H
[20] SHAO H M, WANG D Y. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2020, 258: 113649. doi: 10.1016/j.envpol.2019.113649
[21] YU Y J, CHEN H B, HUA X, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 726: 138679. doi: 10.1016/j.scitotenv.2020.138679
[22] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103
[23] YANG Y H, SHAO H M, WU Q L, et al. Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2020, 256: 113439. doi: 10.1016/j.envpol.2019.113439
[24] QU M, LUO L B, YANG Y H, et al. Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure [J]. Science of the Total Environment, 2019, 697: 134131. doi: 10.1016/j.scitotenv.2019.134131
[25] QIU Y X, LUO L B, YANG Y H, et al. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 705: 135918. doi: 10.1016/j.scitotenv.2019.135918
[26] SHANG X, LU J W, FENG C, et al. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 705: 135837. doi: 10.1016/j.scitotenv.2019.135837
[27] LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans [J]. Environmental Science:Nano, 2018, 5(8): 2009-2020. doi: 10.1039/C8EN00412A
[28] ACOSTA-COLEY I, DURAN-IZQUIERDO M, RODRIGUEZ-CAVALLO E, et al. Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans [J]. Marine Pollution Bulletin, 2019, 146: 574-583. doi: 10.1016/j.marpolbul.2019.06.084
[29] LIU Q Y, CHEN C X, LI M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin [J]. ACS Omega, 2020, 5(51): 33170-33177. doi: 10.1021/acsomega.0c04830
[30] QU M, WANG D Y. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 703: 134817. doi: 10.1016/j.scitotenv.2019.134817
[31] YANG Y H, DONG W T, WU Q L, et al. Induction of protective response associated with expressional alterations in neuronal G protein-coupled receptors in polystyrene nanoparticle exposed Caenorhabditis elegans [J]. Chemical Research in Toxicology, 2021, 34(5): 1308-1318. doi: 10.1021/acs.chemrestox.0c00501
[32] QU M, QIU Y X, KONG Y, et al. Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2019, 254: 112978. doi: 10.1016/j.envpol.2019.112978
[33] SUN L M, LIAO K, WANG D Y. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 768: 144362. doi: 10.1016/j.scitotenv.2020.144362
[34] KIM Y, JEONG J, LEE S, et al. Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study [J]. Journal of Hazardous Materials, 2020, 388: 121725. doi: 10.1016/j.jhazmat.2019.121725
[35] YANG Y H, DU H H, XIAO G S, et al. Response of intestinal Gα subunits to nanopolystyrene in nematode Caenorhabditis elegans [J]. Environmental Science:Nano, 2020, 7(8): 2351-2359. doi: 10.1039/D0EN00561D
[36] YU C W, LUK T C, LIAO V H C. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 412: 125173. doi: 10.1016/j.jhazmat.2021.125173
[37] MUELLER M T, FUESER H, HÖSS S, et al. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion [J]. Ecological Indicators, 2020, 118: 106698. doi: 10.1016/j.ecolind.2020.106698
[38] SCHÖPFER L, MENZEL R, SCHNEPF U, et al. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans [J]. Frontiers in Environmental Science, 2020, 8: 41. doi: 10.3389/fenvs.2020.00041
[39] LI D, JI J, YUAN Y J, et al. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans [J]. Chemosphere, 2020, 245: 125625. doi: 10.1016/j.chemosphere.2019.125625
[40] KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans [J]. Environmental Pollution, 2019, 246: 578-586. doi: 10.1016/j.envpol.2018.12.043
[41] CHEN H B, HUA X, LI H, et al. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans [J]. Chemosphere, 2021, 272: 129642. doi: 10.1016/j.chemosphere.2021.129642
[42] LIU H L, TIAN L J, WANG S T, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 790: 148217. doi: 10.1016/j.scitotenv.2021.148217
[43] QU M, NIDA A, KONG Y, et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109568. doi: 10.1016/j.ecoenv.2019.109568
[44] QU M, LI D, QIU Y X, et al. Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 724: 138378. doi: 10.1016/j.scitotenv.2020.138378
[45] QU M, LI D, ZHAO Y L, et al. Exposure to low-dose nanopolystyrene induces the response of neuronal JNK MAPK signaling pathway in nematode Caenorhabditis elegans [J]. Environmental Sciences Europe, 2020, 32: 58. doi: 10.1186/s12302-020-00331-8
[46] WANG S T, LIU H L, QU M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239. doi: 10.1016/j.ecoenv.2021.112239
[47] LIU H L, WANG D Y. Intestinal mitochondrial unfolded protein response induced by nanoplastic particles in Caenorhabditis elegans [J]. Chemosphere, 2021, 267: 128917. doi: 10.1016/j.chemosphere.2020.128917
[48] YANG Y H, WU Q L, WANG D Y. Dysregulation of G protein-coupled receptors in the intestine by nanoplastic exposure in Caenorhabditis elegans [J]. Environmental Science:Nano, 2021, 8(4): 1019-1028. doi: 10.1039/D0EN00991A
[49] LIU H L, ZHANG R J, WANG D Y. Response of DBL-1/TGF-β signaling-mediated neuron-intestine communication to nanopolystyrene in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 745: 141047. doi: 10.1016/j.scitotenv.2020.141047
[50] WANG S T, LIU H L, ZHAO Y Y, et al. Dysregulated mir-354 enhanced the protective response to nanopolystyrene by affecting the activity of TGF-β signaling pathway in nematode Caenorhabditis elegans [J]. NanoImpact, 2020, 20: 100256. doi: 10.1016/j.impact.2020.100256
[51] SHAO H M, KONG Y, WANG D Y. Response of intestinal signaling communication between the nucleus and peroxisome to nanopolystyrene at a predicted environmental concentration [J]. Environmental Science:Nano, 2020, 7(1): 250-261. doi: 10.1039/C9EN01085H
[52] MUELLER M T, FUESER H, TRAC L N, et al. Surface-related toxicity of polystyrene beads to nematodes and the role of food availability [J]. Environmental Science & Technology, 2020, 54(3): 1790-1798.
[53] LI D, DENG Y J, WANG S T, et al. Assessment of nanopolystyrene toxicity under fungal infection condition in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110625. doi: 10.1016/j.ecoenv.2020.110625
[54] YILIMULATI M, WANG L F, MA X L, et al. Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: Kinetics, thermochemistry and toxicity [J]. Science of the Total Environment, 2021, 750: 142370. doi: 10.1016/j.scitotenv.2020.142370
[55] DONG S S, QU M, RUI Q, et al. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2018, 161: 444-450. doi: 10.1016/j.ecoenv.2018.06.021
[56] SCHULTZ C L, BART S, LAHIVE E, et al. What is on the outside matters-surface charge and dissolve organic matter association affect the toxicity and physiological mode of action of polystyrene nanoplastics to C. elegans [J]. Environmental Science & Technology, 2021, 55(9): 6065-6075.
[57] FICOCIELLO G, GERARDI V, UCCELLETTI D, et al. Molecular and cellular responses to short exposure to bisphenols A, F, and S and eluates of microplastics in C. elegans [J]. Environmental Science and Pollution Research, 2021, 28(1): 805-818. doi: 10.1007/s11356-020-10498-5
[58] CHEN W, CHU Q, YE X, et al. Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge [J]. Environmental Pollution (Barking, Essex:1987), 2021, 274: 116524. doi: 10.1016/j.envpol.2021.116524
[59] 余雪锋, 耿文敬, 郭肖颖, 等. 两种常用氯氰菊酯对秀丽隐杆线虫生殖发育影响的信号转导通路 [J]. 农业环境科学学报, 2019, 38(9): 2066-2073. YU X F, GENG W J, GUO X Y, et al. The reproductive signal pathways induced by two cypermethrins in Caenorhabdities elegans [J]. Journal of Agro-Environment Science, 2019, 38(9): 2066-2073(in Chinese).
[60] LIU H L, ZHAO Y Y, BI K, et al. Dysregulated mir-76 mediated a protective response to nanopolystyrene by modulating heme homeostasis related molecular signaling in nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 212: 112018. doi: 10.1016/j.ecoenv.2021.112018
[61] ZHAO Y Y, XU R R, CHEN X, et al. Induction of protective response to polystyrene nanoparticles associated with dysregulation of intestinal long non-coding RNAs in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 212: 111976. doi: 10.1016/j.ecoenv.2021.111976
[62] YU C W, WU Y C, LIAO V H C. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans [J]. Journal of Hazardous Materials, 2022, 423: 127091. doi: 10.1016/j.jhazmat.2021.127091
[63] WANG S T, ZHANG R J, WANG D Y. Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans [J]. Chemosphere, 2021, 271: 129589. doi: 10.1016/j.chemosphere.2021.129589
[64] KIM S W, KIM D, JEONG S W, et al. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties [J]. Environmental Pollution, 2020, 258: 113740. doi: 10.1016/j.envpol.2019.113740
[65] ZHANG H H, CHENG H D, WANG Y D, et al. Influence of functional group modification on the toxicity of nanoplastics [J]. Frontiers in Marine Science, 2022, 8: 800782. doi: 10.3389/fmars.2021.800782
[66] 张蕾. 海洋微塑料的生态环境风险的研究进度及展望 [J]. 资源节约与环保, 2021(6): 27-28. doi: 10.16317/j.cnki.12-1377/x.2021.06.019 ZHANG L. Research progress and prospect on ecological environmental risks of marine microplastics [J]. Resources Economization & Environmental Protection, 2021(6): 27-28(in Chinese). doi: 10.16317/j.cnki.12-1377/x.2021.06.019
[67] MARTÍN C, FAJARDO C, COSTA G, et al. Bioassays to assess the ecotoxicological impact of polyethylene microplastics and two organic pollutants, simazine and ibuprofen [J]. Chemosphere, 2021, 274: 129704. doi: 10.1016/j.chemosphere.2021.129704
[68] KIM S W, WALDMAN W R, KIM T Y, et al. Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach [J]. Environmental Science & Technology, 2020, 54(21): 13868-13878.
[69] CHEN H B, YANG Y, WANG C, et al. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans [J]. Science of the Total Environment, 2022, 811: 152350. doi: 10.1016/j.scitotenv.2021.152350