-
随着对塑料制品依赖性的提高以及不正确的处理方式和低回收率,塑料垃圾在环境中不断积累. 目前,全球塑料产量约为3.2亿t,并呈指数级增长,预计到2050年将达到330亿t[1]. 这些进入环境的塑料垃圾又在物理、化学与生物等作用下破碎降解,从而形成微塑料(< 5 mm) [2-3]. 由于微塑料具有粒径小、数量大、密度小、疏水性强、易漂移等特性,可以迁移到任何的环境介质中[4]. 研究表明,微塑料在水体、土壤、大气以及饮用水和食品中广泛存在[5],甚至在人的粪便与胎盘中也检测到了微塑料的存在[1]. 已有许多研究者做出了微塑料对生物体的毒理学评估,包括秀丽隐杆线虫、斑马鱼、贻贝和微藻等[6-9].
秀丽隐杆线虫是最丰富的土壤生物群之一,并且由于其体透明、遗传可操作、易于培养、生命周期短、基因组特征明确以及对毒物的敏感性等特点,已成为一种良好的模式生物[2,10-11]. 另外,线虫的基因组信息已确定,其高达80%的基因与人类基因同源[12],因此它已被用作微塑料检测和研究其长期生物效应的指示生物[13]. 目前,微塑料对秀丽线虫的研究内容主要包括神经、生殖和发育等毒性效应以及引起毒性的相关作用机制[2].
本文对相关研究进行了综述,评估了微塑料对秀丽隐杆线虫的毒性效应,并讨论其毒性表达的潜在机制以及影响毒性作用大小的因素. 其中毒性效应主要包括微塑料的致死率与寿命、神经毒性、生殖毒性、发育毒性和遗传毒性,从氧化应激、肠道损伤和信号通路等方面总结毒性机制,最后从微塑料的物化性质和暴露时间等方面探讨影响毒性的因素. 本文将有助于进一步了解微塑料对生态和人类健康的潜在风险及其机制.
微塑料对秀丽隐杆线虫的毒性效应及机制研究进展
Research progress on toxic effects and mechanisms of microplastics in Caenorhabditis elegans
-
摘要: 微塑料是指粒径小于5 mm的塑料碎片或颗粒,广泛分布在海洋、土壤、大气等环境中,并对生态环境和人类健康造成一定的危害. 秀丽隐杆线虫(Caenorhabditis elegans)作为一种优秀的模式生物,被广泛应用于环境毒理学研究. 本文从肠道损伤、致死率和神经毒性等多方面总结微塑料对秀丽隐杆线虫的毒性效应,探索氧化应激、非编码RNAs以及MAPK等信号通路的作用机制,归纳微塑料对秀丽线虫毒性的影响因素,并对未来的研究方向进行展望. 本综述可为微塑料的生物毒性与健康风险提供一定的理论依据.Abstract: Microplastics (MPs), plastic debris or particles smaller than 5 mm, have been ubiquitously detected in marine, soil, and air, etc. MPs may cause harm to the ecological environment and human health. As an excellent model organism, Caenorhabditis elegans(C.elegans) has been widely used in environmental toxicology studies. In this paper, the toxic effects of MPs on C.elegans are summarized from the aspects of mortality, intestinal injury, and neurotoxicity. The underlying mechanisms of these effects are explored, including oxidative stress, microRNAs, and changes in various signal pathways. In addition, we analyse the factors affecting their toxic effects and raise the future research directions. This review provides scientific references for further exploring the toxicity and health risk assessment of MPs.
-
Key words:
- microplastic /
- Caenorhabditis elegans /
- toxicity /
- mechanism /
- influencing factor
-
表 1 微塑料对秀丽隐杆线虫的毒性效应毒性
Table 1. Studies on microplastics toxicity using C.elegans
线虫品系
C. elegans strains微塑料的粒径
Size of MPs暴露浓度
Exposure concentration微塑料类型
Type of MPs暴露时期和时长
Exposure period and duration主要发现
Major findings参考文献
ReferenceN2 1.0、6.0 µm 1 µm 5×107 粒·mL−1
6 µm 5×108 粒·mL−1PS 成虫7 h 摄食受阻,影响繁殖 [14] N2 1.0 µm 107—109 粒·mL−1 PS 成虫5—10 min 泵咽微塑料速率随浓度增加,影响繁殖 [15] N2 0.5、1.0、3.0、
6.0 µm3×106粒·mL−1
3×107粒·mL−1PS 成虫4、24、72 h 摄入微塑料速率与浓度和时间有关,并在肠道中累积 [8] N2、NW1229 1 µm 100、1000 mg·L−1 PS L1期幼虫至妊娠期(约64 h) 微塑料在肠道中累积,产卵障碍、生长迟缓和神经退行性变 [16] N2 100、200、
500 nm、2 µm— PS L1期幼虫 24 h 100 nm的微塑料在肠道、邻近组织和角质层上,2 µm影响摄食 [13] N2 —70 nm 100、200、
400 µg·mL−1PS L1期幼虫至成虫期(5 d) 存活率、生长和运动能力下降 [17] N2 0.5、1 μm 107 粒·mL−1 PS 成虫5、10、20和 30 min,1、2、4、8、16、24 h 微塑料在肠道中累积,但也被排泄 [18] N2 100 nm 1、10、
100、 1000、
10000 µg·L−1PS L1期幼虫至成虫期第1天(约4.5 d) 增加肠道通透性,排泄周期延长 [19] N2、EG1285 1、5 μm 107—1010粒·m−2 PS 96 h 随浓度和时间增加,肠道中积累也增加 [26] EG1285、LX929、N2
KWN190、CL21662、5、100 nm
1、5 μm0.5、1.0、5.0、
10.0 mg·m−2PA、PE、PP、PVC、PS 48 h 存活率、肠道钙离子水平、体长和繁殖率下降,并增加了氧化应激 [22] N2 (4.05 ± 0.04) mm
(5.09 ± 0.21) mm— PE、PP L4期幼虫(年轻成虫) 24 h 环境中的微塑料提取液有毒性 [28] N2 100 nm 0.1、10、
1000 µg·L−1PS L1期幼虫至成虫期第3天(约6.5 d) 导致神经毒性 [24] N2、BZ555、PD4251、AR171、LA62 25、50、100 nm 10—100 µg·L−1 PS L1期幼虫 72 h 头部摆动和身体弯曲频率下降,多巴胺神经元损伤 [29] N2、BZ555 35 nm 1、10、100、
1000 µg·L−1磺酸盐修饰的PS L1期幼虫至成虫期第3天(约6.5 d) 运动行为和感官知觉受损,磺化的PS毒性更大 [30] N2、TU3401 (103.64±4.7) nm 1 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) G蛋白偶联受体基因改变,运动行为下降 [31] N2、WS1433 100 nm 1、10、100、
1000 µg·L−1PS-NH2 L1期幼虫至成虫期第1天(约4.5 d) 氨基修饰的微塑料毒性增强 [32] N2 35 nm 1、10、100 µg·L−1 PS
PS-NH2L1期幼虫至成虫第1天(约4 d) 氨基修饰的微塑料生殖毒性更大 [33] N2 0—68 μm —2.21×105
—3.96×105
—8.91×105
—16.9×105粒·mL−1HDPE 72 h 繁殖率下降 [34] N2、VP303 100 nm 0.1、10、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 产卵数下降 [35] N2 100 nm 1、10、50、100 mg·L−1 PS L1期幼虫 72 h 降低多代的繁殖能力 [36] N2 1 μm 5.49 mg·L−1 PS 21 d 生殖毒性呈剂量依赖 [37] N2 LDPE(5.7±4.0) μm
PLA/ PBAT (4.0±3.1)μm1、10、100 mg·L−1 低密度聚乙烯(LDPE)、聚乳酸/聚己二酸丁酯对苯二甲酸酯(PLA/ PBAT) 6 d 咽部和肠道中积累,子代减少 [38] N2、CF1553 30 nm 0.1、1、10、100 µg·L−1 PS L1期幼虫至成虫期第1天(约4.5 d) 孵卵数和运动行为下降,诱导细胞凋亡和氧化应激 [39] N2 50、200 nm 17.3、86.8 mg·L−1
1、10 µg·L−1PS L4期幼虫(年轻成虫) 24 h 运动行为和繁殖率下降,影响代谢,诱导氧化应激 [40] N2 (1.002±0.005) μm 0.1—100 µg·L−1 PS L4期幼虫(年轻成虫) 48 h 脂褐素积累,跨代神经毒性 [41] N2 100 nm 0.1、1、10、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 脂质积累并增加了mdt-15和
sbp-1的表达[23] N2 100 nm 0.1—100 µg·L−1 PS L1期幼虫至成虫期第1天(约4.5 d) 肠通透性增加,elt-2突变体更敏感 [20] N2 1 μm 1、10、100、100 µg·L−1 PS 72 h 微塑料在肠道中累积,活性氧和脂褐素累积增加并且肠道损伤 [21] N2 (101.6 ± 3.7)nm 1 µg·L−1 PS L1期幼虫至成虫第1天 微塑料加重了微囊藻毒素-LR的毒性 [43] N2、CD1553 100 nm 1、10、100、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 降低寿命和运动行为,增加氧化应激,改变锰依赖性超氧化物歧化酶 [25] N2、TU3401、MAH23 100 nm 0.1、1、10、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 增加基因表达水平(lin-45, mek-2和mpk-1),下调基因(ins4, ins-39和daf-28) [44] N2 100 nm 0.1、10、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 诱导神经元Jun-N末端激酶/丝裂活化蛋白激酶(MAPK/JNK)信号通路,增加jkk-1、mek-1和jnk-1的表达 [45] N2 100 nm 1—1000 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 酪胺和谷氨酸相关信号在调节纳米塑料毒性中起重要作用 [46] N2 (102.35±3.8) nm 1—100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 产生ROS,HSP-6::GFP荧光信号增强 [47] N2 100 nm 1—1000 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) G-蛋白偶联受体(GPCRs)调控线粒体展开蛋白反应 [48] N2 100 nm 1—1000 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) DBL-1/转化生长因子介导的神经毒性 [49] N2、VP303 100 nm 1 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 增加了mir-38表达;TGF-β通路介导反应 [50] N2 50、200 nm 1、10 µg·L−1 PS 24 h 能量代谢被扰乱,降低运动行为和繁殖率 [51] N2、RB1071 100、500 nm
1、3、6、10 μm— PS 96 h 毒性与表面积有关,食物摄入受影响 [52] N2、CF1553 30 nm 0.1、1、10、100 µg·L−1 PS L1期幼虫至成虫期第3天(约6.5 d) 增强了真菌感染的不良反应 [53] N2 200、500 nm 100 mg·L−1 PS-COOH 成虫 24 h 吸附了环丙沙星的羧基化微塑料毒性高于这两者本身对线虫存活率的影响 [54] N2、CF1553 (108.2±4.5) nm 0.01、0.1、1 µg·L−1 PS L1期幼虫至成虫期第1天(约4.5 d) 增强了二氧化钛纳米粒子毒性 [55] N2 50、60 nm 0、1、2.8、7.1、18.8、50 mg·L−1 PS、PS-COOH、PS-NH2 72 h 表面电荷影响毒性,正电荷的微塑料毒性最大,负电荷的毒性最小 [56] “—”表示文章中没有相关数据. “—”indicates that there is no relevant data in the article. -
[1] BHATTACHARYA A, KHARE S K. Ecological and toxicological manifestations of microplastics: current scenario, research gaps, and possible alleviation measures [J]. Journal of Environmental Science and Health. Part C, Toxicology and Carcinogenesis, 2020, 38(1): 1-20. doi: 10.1080/10590501.2019.1699379 [2] BHAGAT J, NISHIMURA N, SHIMADA Y. Worming into a robust model to unravel the micro/nanoplastic toxicity in soil: A review on Caenorhabditis elegans [J]. TrAC Trends in Analytical Chemistry, 2021, 138: 116235. doi: 10.1016/j.trac.2021.116235 [3] ISSAC M N, KANDASUBRAMANIAN B. Effect of microplastics in water and aquatic systems [J]. Environmental Science and Pollution Research, 2021, 28(16): 19544-19562. doi: 10.1007/s11356-021-13184-2 [4] 丁平, 张丽娟, 黄道建, 等. 微塑料对海洋生物的毒性效应及机理研究进展 [J]. 海洋湖沼通报, 2021, 43(2): 144-153. doi: 10.13984/j.cnki.cn37-1141.2021.02.019 DING P, ZHANG L J, HUANG D J, et al. Toxic effect and mechanism of microplastics on marine organisms [J]. Transactions of Oceanology and Limnology, 2021, 43(2): 144-153(in Chinese). doi: 10.13984/j.cnki.cn37-1141.2021.02.019
[5] 张瑾, 李丹. 环境中微/纳米塑料的污染现状、分析方法、毒性评价及健康效应研究进展 [J]. 环境化学, 2021, 40(1): 28-40. doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2020062003 ZHANG J, LI D. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment [J]. Environmental Chemistry, 2021, 40(1): 28-40(in Chinese). doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2020062003
[6] CHEN H B, HUA X, YANG Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 419: 126482. doi: 10.1016/j.jhazmat.2021.126482 [7] 赵佳, 饶本强, 郭秀梅, 等. 微塑料对斑马鱼胚胎孵化影响及其在幼鱼肠道中的积累 [J]. 环境科学, 2021, 42(1): 485-491. doi: 10.13227/j.hjkx.202003199 ZHAO J, RAO B Q, GUO X M, et al. Effects of microplastics on embryo hatching and intestinal accumulation in larval zebrafish Danio rerio [J]. Environmental Science, 2021, 42(1): 485-491(in Chinese). doi: 10.13227/j.hjkx.202003199
[8] FUESER H, MUELLER M T, WEISS L, et al. Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size [J]. Environmental Pollution, 2019, 255: 113227. doi: 10.1016/j.envpol.2019.113227 [9] MAO Y F, AI H N, CHEN Y, et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period [J]. Chemosphere, 2018, 208: 59-68. doi: 10.1016/j.chemosphere.2018.05.170 [10] WU T S, XU H S, LIANG X, et al. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles [J]. Chemosphere, 2019, 221: 708-726. doi: 10.1016/j.chemosphere.2019.01.021 [11] CHEN H B, WANG C, LI H, et al. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans [J]. Journal of Environmental Management, 2019, 237: 519-525. [12] KANG H M, JEONG C B, LEE Y H, et al. Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology [J]. Marine Pollution Bulletin, 2017, 124(2): 614-623. doi: 10.1016/j.marpolbul.2016.11.049 [13] NIGAMATZYANOVA L, FAKHRULLIN R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study [J]. Environmental Pollution, 2021, 271: 116337. doi: 10.1016/j.envpol.2020.116337 [14] RAUCHSCHWALBE M T, FUESER H, TRAUNSPURGER W, et al. Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: The roles of food dilution and pharyngeal pumping [J]. Environmental Pollution, 2021, 273: 116471. doi: 10.1016/j.envpol.2021.116471 [15] FUESER H, RAUCHSCHWALBE M T, HÖSS S, et al. Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans [J]. Aquatic Toxicology, 2021, 235: 105827. doi: 10.1016/j.aquatox.2021.105827 [16] YOUSSEF K, ARCHONTA D, KUBISESKI T J, et al. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans [J]. Science of the Total Environment, 2021, 783: 147055. doi: 10.1016/j.scitotenv.2021.147055 [17] CHU Q, ZHANG S, YU X, et al. Fecal microbiota transplantation attenuates nano-plastics induced toxicity in Caenorhabditis elegans [J]. Science of The Total Environment, 2021, 779: 146454. doi: 10.1016/j.scitotenv.2021.146454 [18] FUESER H, MUELLER M T, TRAUNSPURGER W. Rapid ingestion and egestion of spherical microplastics by bacteria-feeding nematodes [J]. Chemosphere, 2020, 261: 128162. doi: 10.1016/j.chemosphere.2020.128162 [19] ZHAO L, QU M, WONG G, et al. Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode Caenorhabditis elegans [J]. Environmental Science:Nano, 2017, 4(12): 2356-2366. doi: 10.1039/C7EN00707H [20] SHAO H M, WANG D Y. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2020, 258: 113649. doi: 10.1016/j.envpol.2019.113649 [21] YU Y J, CHEN H B, HUA X, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 726: 138679. doi: 10.1016/j.scitotenv.2020.138679 [22] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103 [23] YANG Y H, SHAO H M, WU Q L, et al. Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2020, 256: 113439. doi: 10.1016/j.envpol.2019.113439 [24] QU M, LUO L B, YANG Y H, et al. Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure [J]. Science of the Total Environment, 2019, 697: 134131. doi: 10.1016/j.scitotenv.2019.134131 [25] QIU Y X, LUO L B, YANG Y H, et al. Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 705: 135918. doi: 10.1016/j.scitotenv.2019.135918 [26] SHANG X, LU J W, FENG C, et al. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 705: 135837. doi: 10.1016/j.scitotenv.2019.135837 [27] LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans [J]. Environmental Science:Nano, 2018, 5(8): 2009-2020. doi: 10.1039/C8EN00412A [28] ACOSTA-COLEY I, DURAN-IZQUIERDO M, RODRIGUEZ-CAVALLO E, et al. Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans [J]. Marine Pollution Bulletin, 2019, 146: 574-583. doi: 10.1016/j.marpolbul.2019.06.084 [29] LIU Q Y, CHEN C X, LI M T, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin [J]. ACS Omega, 2020, 5(51): 33170-33177. doi: 10.1021/acsomega.0c04830 [30] QU M, WANG D Y. Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 703: 134817. doi: 10.1016/j.scitotenv.2019.134817 [31] YANG Y H, DONG W T, WU Q L, et al. Induction of protective response associated with expressional alterations in neuronal G protein-coupled receptors in polystyrene nanoparticle exposed Caenorhabditis elegans [J]. Chemical Research in Toxicology, 2021, 34(5): 1308-1318. doi: 10.1021/acs.chemrestox.0c00501 [32] QU M, QIU Y X, KONG Y, et al. Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans [J]. Environmental Pollution, 2019, 254: 112978. doi: 10.1016/j.envpol.2019.112978 [33] SUN L M, LIAO K, WANG D Y. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 768: 144362. doi: 10.1016/j.scitotenv.2020.144362 [34] KIM Y, JEONG J, LEE S, et al. Identification of adverse outcome pathway related to high-density polyethylene microplastics exposure: Caenorhabditis elegans transcription factor RNAi screening and zebrafish study [J]. Journal of Hazardous Materials, 2020, 388: 121725. doi: 10.1016/j.jhazmat.2019.121725 [35] YANG Y H, DU H H, XIAO G S, et al. Response of intestinal Gα subunits to nanopolystyrene in nematode Caenorhabditis elegans [J]. Environmental Science:Nano, 2020, 7(8): 2351-2359. doi: 10.1039/D0EN00561D [36] YU C W, LUK T C, LIAO V H C. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2021, 412: 125173. doi: 10.1016/j.jhazmat.2021.125173 [37] MUELLER M T, FUESER H, HÖSS S, et al. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion [J]. Ecological Indicators, 2020, 118: 106698. doi: 10.1016/j.ecolind.2020.106698 [38] SCHÖPFER L, MENZEL R, SCHNEPF U, et al. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans [J]. Frontiers in Environmental Science, 2020, 8: 41. doi: 10.3389/fenvs.2020.00041 [39] LI D, JI J, YUAN Y J, et al. Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans [J]. Chemosphere, 2020, 245: 125625. doi: 10.1016/j.chemosphere.2019.125625 [40] KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans [J]. Environmental Pollution, 2019, 246: 578-586. doi: 10.1016/j.envpol.2018.12.043 [41] CHEN H B, HUA X, LI H, et al. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans [J]. Chemosphere, 2021, 272: 129642. doi: 10.1016/j.chemosphere.2021.129642 [42] LIU H L, TIAN L J, WANG S T, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 790: 148217. doi: 10.1016/j.scitotenv.2021.148217 [43] QU M, NIDA A, KONG Y, et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109568. doi: 10.1016/j.ecoenv.2019.109568 [44] QU M, LI D, QIU Y X, et al. Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 724: 138378. doi: 10.1016/j.scitotenv.2020.138378 [45] QU M, LI D, ZHAO Y L, et al. Exposure to low-dose nanopolystyrene induces the response of neuronal JNK MAPK signaling pathway in nematode Caenorhabditis elegans [J]. Environmental Sciences Europe, 2020, 32: 58. doi: 10.1186/s12302-020-00331-8 [46] WANG S T, LIU H L, QU M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112239. doi: 10.1016/j.ecoenv.2021.112239 [47] LIU H L, WANG D Y. Intestinal mitochondrial unfolded protein response induced by nanoplastic particles in Caenorhabditis elegans [J]. Chemosphere, 2021, 267: 128917. doi: 10.1016/j.chemosphere.2020.128917 [48] YANG Y H, WU Q L, WANG D Y. Dysregulation of G protein-coupled receptors in the intestine by nanoplastic exposure in Caenorhabditis elegans [J]. Environmental Science:Nano, 2021, 8(4): 1019-1028. doi: 10.1039/D0EN00991A [49] LIU H L, ZHANG R J, WANG D Y. Response of DBL-1/TGF-β signaling-mediated neuron-intestine communication to nanopolystyrene in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2020, 745: 141047. doi: 10.1016/j.scitotenv.2020.141047 [50] WANG S T, LIU H L, ZHAO Y Y, et al. Dysregulated mir-354 enhanced the protective response to nanopolystyrene by affecting the activity of TGF-β signaling pathway in nematode Caenorhabditis elegans [J]. NanoImpact, 2020, 20: 100256. doi: 10.1016/j.impact.2020.100256 [51] SHAO H M, KONG Y, WANG D Y. Response of intestinal signaling communication between the nucleus and peroxisome to nanopolystyrene at a predicted environmental concentration [J]. Environmental Science:Nano, 2020, 7(1): 250-261. doi: 10.1039/C9EN01085H [52] MUELLER M T, FUESER H, TRAC L N, et al. Surface-related toxicity of polystyrene beads to nematodes and the role of food availability [J]. Environmental Science & Technology, 2020, 54(3): 1790-1798. [53] LI D, DENG Y J, WANG S T, et al. Assessment of nanopolystyrene toxicity under fungal infection condition in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110625. doi: 10.1016/j.ecoenv.2020.110625 [54] YILIMULATI M, WANG L F, MA X L, et al. Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: Kinetics, thermochemistry and toxicity [J]. Science of the Total Environment, 2021, 750: 142370. doi: 10.1016/j.scitotenv.2020.142370 [55] DONG S S, QU M, RUI Q, et al. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2018, 161: 444-450. doi: 10.1016/j.ecoenv.2018.06.021 [56] SCHULTZ C L, BART S, LAHIVE E, et al. What is on the outside matters-surface charge and dissolve organic matter association affect the toxicity and physiological mode of action of polystyrene nanoplastics to C. elegans [J]. Environmental Science & Technology, 2021, 55(9): 6065-6075. [57] FICOCIELLO G, GERARDI V, UCCELLETTI D, et al. Molecular and cellular responses to short exposure to bisphenols A, F, and S and eluates of microplastics in C. elegans [J]. Environmental Science and Pollution Research, 2021, 28(1): 805-818. doi: 10.1007/s11356-020-10498-5 [58] CHEN W, CHU Q, YE X, et al. Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge [J]. Environmental Pollution (Barking, Essex:1987), 2021, 274: 116524. doi: 10.1016/j.envpol.2021.116524 [59] 余雪锋, 耿文敬, 郭肖颖, 等. 两种常用氯氰菊酯对秀丽隐杆线虫生殖发育影响的信号转导通路 [J]. 农业环境科学学报, 2019, 38(9): 2066-2073. YU X F, GENG W J, GUO X Y, et al. The reproductive signal pathways induced by two cypermethrins in Caenorhabdities elegans [J]. Journal of Agro-Environment Science, 2019, 38(9): 2066-2073(in Chinese).
[60] LIU H L, ZHAO Y Y, BI K, et al. Dysregulated mir-76 mediated a protective response to nanopolystyrene by modulating heme homeostasis related molecular signaling in nematode Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 212: 112018. doi: 10.1016/j.ecoenv.2021.112018 [61] ZHAO Y Y, XU R R, CHEN X, et al. Induction of protective response to polystyrene nanoparticles associated with dysregulation of intestinal long non-coding RNAs in Caenorhabditis elegans [J]. Ecotoxicology and Environmental Safety, 2021, 212: 111976. doi: 10.1016/j.ecoenv.2021.111976 [62] YU C W, WU Y C, LIAO V H C. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans [J]. Journal of Hazardous Materials, 2022, 423: 127091. doi: 10.1016/j.jhazmat.2021.127091 [63] WANG S T, ZHANG R J, WANG D Y. Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans [J]. Chemosphere, 2021, 271: 129589. doi: 10.1016/j.chemosphere.2021.129589 [64] KIM S W, KIM D, JEONG S W, et al. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties [J]. Environmental Pollution, 2020, 258: 113740. doi: 10.1016/j.envpol.2019.113740 [65] ZHANG H H, CHENG H D, WANG Y D, et al. Influence of functional group modification on the toxicity of nanoplastics [J]. Frontiers in Marine Science, 2022, 8: 800782. doi: 10.3389/fmars.2021.800782 [66] 张蕾. 海洋微塑料的生态环境风险的研究进度及展望 [J]. 资源节约与环保, 2021(6): 27-28. doi: 10.16317/j.cnki.12-1377/x.2021.06.019 ZHANG L. Research progress and prospect on ecological environmental risks of marine microplastics [J]. Resources Economization & Environmental Protection, 2021(6): 27-28(in Chinese). doi: 10.16317/j.cnki.12-1377/x.2021.06.019
[67] MARTÍN C, FAJARDO C, COSTA G, et al. Bioassays to assess the ecotoxicological impact of polyethylene microplastics and two organic pollutants, simazine and ibuprofen [J]. Chemosphere, 2021, 274: 129704. doi: 10.1016/j.chemosphere.2021.129704 [68] KIM S W, WALDMAN W R, KIM T Y, et al. Effects of different microplastics on nematodes in the soil environment: Tracking the extractable additives using an ecotoxicological approach [J]. Environmental Science & Technology, 2020, 54(21): 13868-13878. [69] CHEN H B, YANG Y, WANG C, et al. Reproductive toxicity of UV-photodegraded polystyrene microplastics induced by DNA damage-dependent cell apoptosis in Caenorhabditis elegans [J]. Science of the Total Environment, 2022, 811: 152350. doi: 10.1016/j.scitotenv.2021.152350