[1] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
[2] PAN M, CHU L M. Fate of antibiotics in soil and their uptake by edible crops [J]. Science of the Total Environment, 2017, 599/600: 500-512. doi: 10.1016/j.scitotenv.2017.04.214
[3] BEN Y J, HU M, ZHONG F X, et al. Human daily dietary intakes of antibiotic residues: Dominant sources and health risks [J]. Environmental Research, 2022, 212: 113387. doi: 10.1016/j.envres.2022.113387
[4] CHEN X L, YANG Y Y, KE Y C, et al. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect [J]. Science of the Total Environment, 2022, 814: 152852. doi: 10.1016/j.scitotenv.2021.152852
[5] MOSER C, LERCHE C J, THOMSEN K, et al. Antibiotic therapy as personalized medicine - general considerations and complicating factors [J]. APMIS, 2019, 127(5): 361-371. doi: 10.1111/apm.12951
[6] MCMANUS P S, STOCKWELL V O, SUNDIN G W, et al. Antibiotic use in plant agriculture [J]. Annual Review of Phytopathology, 2002, 40: 443-465. doi: 10.1146/annurev.phyto.40.120301.093927
[7] ROBLES-JIMENEZ L E, ARANDA-AGUIRRE E, CASTELAN-ORTEGA O A, et al. Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review [J]. Animals:an Open Access Journal from MDPI, 2021, 12(1): 60.
[8] MARTINS M T, MELO J, BARRETO F, et al. A simple, fast and cheap non-SPE screening method for antibacterial residue analysis in milk and liver using liquid chromatography-tandem mass spectrometry [J]. Talanta, 2014, 129: 374-383. doi: 10.1016/j.talanta.2014.04.049
[9] KLEIN E Y, van BOECKEL T P, MARTINEZ E M, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): E3463-E3470.
[10] 邵彬彬. 高效三元复合光催化剂的制备及其去除水体中抗生素污染物的机理研究[D]. 长沙: 湖南大学, 2020. SHAO B B. Synthesis of efficient ternary composite photocatalysts and their mechanism study of removing antibiotic pollutants from water[D]. Changsha: Hunan University, 2020(in Chinese).
[11] TISEO K, HUBER L, GILBERT M, et al. Global trends in antimicrobial use in food animals from 2017 to 2030 [J]. Antibiotics (Basel, Switzerland), 2020, 9(12): 918.
[12] 蔡东明, 欧阳洁, 丁锦建, 等. 抗生素消毒副产物的分析检测及毒性效应研究进展 [J]. 分析化学, 2022, 50(3): 327-340. doi: 10.19756/j.issn.0253-3820.210811 CAI D M, OUYANG J, DING J J, et al. Research progress on identification and toxic effects of antibiotics disinfection by-products [J]. Chinese Journal of Analytical Chemistry, 2022, 50(3): 327-340(in Chinese). doi: 10.19756/j.issn.0253-3820.210811
[13] 邹秀萍, 李振玮, 张丛林, 等. 构建中国特色新污染物风险防控体系[J]. 环境生态学, 2022, 4(S1): 111-115. ZOU X P, LI Z W, ZHANG C L, et al. Building on ecological risk prevention and control system of emerging contaminants with Chinese characteristics[J]. Environmental Ecology, 2022, 4(Sup 1): 111-115(in Chinese).
[14] VREE T B, HEKSTER Y A, BAARS A M, et al. Rapid determination of amoxycillin (clamoxyl) and ampicillin (penbritin) in body fluids of many by means of high-performance liquid chromatography [J]. Journal of Chromatography, 1978, 145(3): 496-501. doi: 10.1016/S0378-4347(00)81384-5
[15] BUSZEWSKI B, SZULTKA M, OLSZOWY P, et al. A novel approach to the rapid determination of amoxicillin in human plasma by solid phase microextraction and liquid chromatography [J]. Analyst, 2011, 136(12): 2635-2642. doi: 10.1039/c1an00005e
[16] SUPATTANAPONG S, KONSIL J. Solid phase extraction and high performance liquid chromatography for the determination of azithromycin in human plasma [J]. The Southeast Asian Journal of Tropical Medicine and Public Health, 2008, 39(6): 978-987.
[17] YıLDıRıM S, KARAKOÇ H N, YAŞAR A, et al. Determination of levofloxacin, ciprofloxacin, moxifloxacin and gemifloxacin in urine and plasma by HPLC-FLD-DAD using pentafluorophenyl core-shell column: Application to drug monitoring [J]. Biomedical Chromatography:BMC, 2020, 34(10): e4925.
[18] FATICA E, FABER J, GAFFRON C, et al. Quantification of serum sulfamethoxazole and trimethoprim by ultra-fast solid-phase extraction-tandem mass spectrometry [J]. Therapeutic Drug Monitoring, 2020, 42(5): 724-732. doi: 10.1097/FTD.0000000000000785
[19] WANG X L, GUO T, WEI Y B, et al. Determination of quinolone antibiotic residues in human serum and urine using high-performance liquid chromatography/tandem mass spectrometry [J]. Journal of Analytical Toxicology, 2019, 43(7): 579-586. doi: 10.1093/jat/bkz034
[20] SIME F B, ROBERTS M S, ROBERTS J A, et al. Simultaneous determination of seven β-lactam antibiotics in human plasma for therapeutic drug monitoring and pharmacokinetic studies [J]. Journal of Chromatography B, 2014, 960: 134-144. doi: 10.1016/j.jchromb.2014.04.029
[21] CAZORLA-REYES R, ROMERO-GONZÁLEZ R, FRENICH A G, et al. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89: 203-212. doi: 10.1016/j.jpba.2013.11.004
[22] 陈聪, 严慧, 沈保华, 等. 超高效液相色谱-串联质谱法同时测定尿液中16种抗生素 [J]. 法医学杂志, 2011, 27(1): 25-29. CHEN C, YAN H, SHEN B H, et al. Simultaneous determination of sixteen antibiotics in human urine with ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Forensic Medicine, 2011, 27(1): 25-29(in Chinese).
[23] XIE F F, LIU L Y, WANG Y, et al. An UPLC-PDA assay for simultaneous determination of seven antibiotics in human plasma [J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210: 114558. doi: 10.1016/j.jpba.2021.114558
[24] BAIETTO L, D’AVOLIO A, de ROSA F G, et al. Development and validation of a simultaneous extraction procedure for HPLC-MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma [J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 791-798. doi: 10.1007/s00216-009-3263-1
[25] DEI CAS M, CASAGNI E, GAMBARO V, et al. Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS [J]. Journal of Chromatography. B, 2019, 1116: 38-43. doi: 10.1016/j.jchromb.2019.03.036
[26] PERESTRELO R, SILVA P, PORTO-FIGUEIRA P, et al. QuEChERS - Fundamentals, relevant improvements, applications and future trends [J]. Analytica Chimica Acta, 2019, 1070: 1-28. doi: 10.1016/j.aca.2019.02.036
[27] SUNYER-CALDÚ A, DIAZ-CRUZ M S. Development of a QuEChERS-based method for the analysis of pharmaceuticals and personal care products in lettuces grown in field-scale agricultural plots irrigated with reclaimed water [J]. Talanta, 2021, 230: 122302. doi: 10.1016/j.talanta.2021.122302
[28] ACOSTA-DACAL A, RIAL-BERRIEL C, DÍAZ-DÍAZ R, et al. Validation of a method scope extension for the analysis of POPs in soil and verification in organic and conventional farms of the canary Islands [J]. Toxics, 2021, 9(5): 101. doi: 10.3390/toxics9050101
[29] PETRARCA M H, BRAGA P A D C, REYES F G R, et al. Exploring miniaturized sample preparation approaches combined with LC-QToF-MS for the analysis of sulfonamide antibiotic residues in meat- and/or egg-based baby foods [J]. Food Chemistry, 2022, 366: 130587. doi: 10.1016/j.foodchem.2021.130587
[30] PÉREZ-BURGOS R, GRZELAK E M, GOKCE G, et al. Quechers methodologies as an alternative to solid phase extraction (SPE) for the determination and characterization of residues of cephalosporins in beef muscle using LC-MS/MS [J]. Journal of Chromatography B, 2012, 899: 57-65. doi: 10.1016/j.jchromb.2012.05.002
[31] HUANG W J, QIU Q J, CHEN M Y, et al. Determination of 18 antibiotics in urine using LC-QqQ-MS/MS [J]. Journal of Chromatography B, 2019, 1105: 176-183. doi: 10.1016/j.jchromb.2018.12.019
[32] di ROCCO M, MOLONEY M, O’BEIRNE T, et al. Development and validation of a quantitative confirmatory method for 30 β-lactam antibiotics in bovine muscle using liquid chromatography coupled to tandem mass spectrometry [J]. Journal of Chromatography A, 2017, 1500: 121-135. doi: 10.1016/j.chroma.2017.04.022
[33] TU X J, CHEN W B. A review on the recent progress in matrix solid phase dispersion [J]. Molecules (Basel, Switzerland), 2018, 23(11): 2767. doi: 10.3390/molecules23112767
[34] SUN H W, QIAO F X, LIU G Y, et al. Simultaneous isolation of six fluoroquinolones in serum samples by selective molecularly imprinted matrix solid-phase dispersion [J]. Analytica Chimica Acta, 2008, 625(2): 154-159. doi: 10.1016/j.aca.2008.07.025
[35] FERNANDEZ-TORRES R, CONSENTINO M O, LOPEZ M A B, et al. Simultaneous determination of 11 antibiotics and their main metabolites from four different groups by reversed-phase high-performance liquid chromatography-diode array-fluorescence (HPLC-DAD-FLD) in human urine samples [J]. Talanta, 2010, 81(3): 871-880. doi: 10.1016/j.talanta.2010.01.031
[36] KAALE E, LONG Y H, FONGE H A, et al. Gentamicin assay in human serum by solid-phase extraction and capillary electrophoresis [J]. Electrophoresis, 2005, 26(3): 640-647. doi: 10.1002/elps.200410012
[37] ZHANG T, WATSON D G, AZIKE C, et al. Determination of vancomycin in serum by liquid chromatography-high resolution full scan mass spectrometry [J]. Journal of Chromatography B, 2007, 857(2): 352-356. doi: 10.1016/j.jchromb.2007.07.041
[38] OERTEL R, RENNER U, KIRCH W. Determination of neomycin by LC-tandem mass spectrometry using hydrophilic interaction chromatography [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35(3): 633-638. doi: 10.1016/j.jpba.2004.01.018
[39] DOTSIKAS Y, MARKOPOULOU C K, KOUNDOURELLIS J E, et al. Validation of a novel LC-MS/MS method for the quantitation of colistin A and B in human plasma [J]. Journal of Separation Science, 2011, 34(1): 37-45. doi: 10.1002/jssc.201000680
[40] WANG H X, WANG B, ZHOU Y, et al. Rapid and sensitive screening and selective quantification of antibiotics in human urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2014, 406(30): 8049-8058. doi: 10.1007/s00216-014-8197-6
[41] LIU K Y, ZHANG J J, GENG M L, et al. A stable isotope dilution assay for multi-class antibiotics in pregnant urines by LC-MS/MS [J]. Chromatographia, 2020, 83(4): 507-521. doi: 10.1007/s10337-020-03866-3
[42] XIE R, WEN J, WEI H, et al. High-throughput determination of faropenem in human plasma and urine by on-line solid-phase extraction coupled to high-performance liquid chromatography with UV detection and its application to the pharmacokinetic study [J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52(1): 114-121. doi: 10.1016/j.jpba.2009.12.010
[43] SZULTKA-MLYNSKA M, POMASTOWSKI P, BUSZEWSKI B. Application of solid phase microextraction followed by liquid chromatography-mass spectrometry in the determination of antibiotic drugs and their metabolites in human whole blood and tissue samples [J]. Journal of Chromatography B, 2018, 1086: 153-165. doi: 10.1016/j.jchromb.2018.04.013
[44] 陈波. 新型样品前处理技术在环境有机污染物分析检测中的应用研究[D]. 重庆: 西南大学, 2012. CHEN B. Application of new sample pre-treatment technology in the analysis and detection of environmental organic pollutants[D]. Chongqing: Southwest University, 2012(in Chinese).
[45] PASTOR-BELDA M, CAMPILLO N, ARROYO-MANZANARES N, et al. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry [J]. Journal of Chromatography B, 2020, 1146: 122122. doi: 10.1016/j.jchromb.2020.122122
[46] MIZUNO A, UEMATSU T, NAKASHIMA M. Simultaneous determination of ofloxacin, norfloxacin and ciprofloxacin in human hair by high-performance liquid chromatography and fluorescence detection [J]. Journal of Chromatography B:Biomedical Sciences and Applications, 1994, 653(2): 187-193. doi: 10.1016/0378-4347(93)E0440-2
[47] LI N, HO K W K, YING G G, et al. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong [J]. Environment International, 2017, 108: 246-252. doi: 10.1016/j.envint.2017.08.014
[48] 李明, 马家辰, 李红梅, 等. 静电场轨道阱质谱的进展 [J]. 质谱学报, 2013, 34(3): 185-192. LI M, MA J C, LI H M, et al. Progress on electrostatic orbitrap mass spectrometer [J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(3): 185-192(in Chinese).
[49] QIU M, HU A L, HUANG Y M M, et al. Elucidating degradation mechanisms of florfenicol in soil by stable-isotope assisted nontarget screening [J]. Journal of Hazardous Materials, 2021, 403: 123974. doi: 10.1016/j.jhazmat.2020.123974
[50] FENG X X, LI D, LIANG W Q, et al. Recognition and prioritization of chemical mixtures and transformation products in Chinese estuarine waters by suspect screening analysis [J]. Environmental Science & Technology, 2021, 55(14): 9508-9517.
[51] VERGEYNST L, van LANGENHOVE H, JOOS P, et al. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2014, 406(11): 2533-2547. doi: 10.1007/s00216-014-7672-4
[52] GAGO-FERRERO P, SCHYMANSKI E L, BLETSOU A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS [J]. Environmental Science & Technology, 2015, 49(20): 12333-12341.
[53] SOLLIEC M, ROY-LACHAPELLE A, SAUVÉ S. Development of a suspect and non-target screening approach to detect veterinary antibiotic residues in a complex biological matrix using liquid chromatography/high-resolution mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2015, 29(24): 2361-2373. doi: 10.1002/rcm.7405
[54] GÓMEZ-PÉREZ M L, PLAZA-BOLAÑOS P, ROMERO-GONZÁLEZ R, et al. Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography-Orbitrap high resolution mass spectrometry [J]. Journal of Chromatography A, 2012, 1248: 130-138. doi: 10.1016/j.chroma.2012.05.088
[55] WANG H X, TANG C X, WANG Y P, et al. Urinary antibiotic level of school children in Shanghai, East China, 2017-2020 [J]. Environmental Pollution, 2021, 291: 118167. doi: 10.1016/j.envpol.2021.118167
[56] WANG H X, WANG B, ZHAO Q, et al. Antibiotic body burden of Chinese school children: A multisite biomonitoring-based study [J]. Environmental Science & Technology, 2015, 49(8): 5070-5079.
[57] YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications [J]. Science of the Total Environment, 2021, 762: 143129. doi: 10.1016/j.scitotenv.2020.143129
[58] LAN L Y, YAO Y, PING J F, et al. Recent advances in nanomaterial-based biosensors for antibiotics detection [J]. Biosensors and Bioelectronics, 2017, 91: 504-514. doi: 10.1016/j.bios.2017.01.007
[59] LIU Y J, WANG S Q, PAN J L, et al. Antibiotics in urine of the general population: Exposure, health risk assessment, and food factors [J]. Journal of Environmental Science and Health, Part B, 2022, 57(1): 1-12. doi: 10.1080/03601234.2021.2017211
[60] SIMIN J, FORNES R, LIU Q, et al. Antibiotic use and risk of colorectal cancer: A systematic review and dose–response meta-analysis [J]. British Journal of Cancer, 2020, 123(12): 1825-1832. doi: 10.1038/s41416-020-01082-2
[61] WANG H X, WANG N, WANG B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science & Technology, 2016, 50(5): 2692-2699.
[62] LIU X J, ZHANG J J, SANG Y R, et al. Antibiotic exposure and potential risk of depression in the Chinese elderly: A biomonitoring-based population study [J]. Environmental Science and Pollution Research, 2021, 28(21): 26794-26806. doi: 10.1007/s11356-021-12560-2
[63] XU H X, LI H Y. Acne, the skin microbiome, and antibiotic treatment [J]. American Journal of Clinical Dermatology, 2019, 20(3): 335-344. doi: 10.1007/s40257-018-00417-3
[64] WANG H X, TANG C X, YANG J Q, et al. Predictors of urinary antibiotics in children of Shanghai and health risk assessment [J]. Environment International, 2018, 121: 507-514. doi: 10.1016/j.envint.2018.09.032
[65] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[66] DECOSTERD L A, MERCIER T, TERNON B, et al. Validation and clinical application of a multiplex high performance liquid chromatography - tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections [J]. Journal of Chromatography. B, 2020, 1157: 122160. doi: 10.1016/j.jchromb.2020.122160
[67] FREITAS A, BARBOSA J, RAMOS F. Multidetection of antibiotics in liver tissue by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry [J]. Journal of Chromatography B, 2015, 976/977: 49-54. doi: 10.1016/j.jchromb.2014.11.008
[68] SZERKUS O, JACYNA J, GIBAS A, et al. Robust HPLC-MS/MS method for levofloxacin and ciprofloxacin determination in human prostate tissue [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 132: 173-183. doi: 10.1016/j.jpba.2016.10.008
[69] HUANG Y S, ZHANG Z H, HOU T C, et al. Antibiotic burden of school children from Tibetan, Hui, and Han groups in the Qinghai-Tibetan Plateau [J]. PLoS One, 2020, 15(2): e0229205. doi: 10.1371/journal.pone.0229205
[70] ZHANG J J, LIU K Y, SUN L, et al. Exposure to antibiotics and mental disorders in children: A community-based cross-sectional study [J]. Environmental Geochemistry and Health, 2021, 43(8): 3237-3253. doi: 10.1007/s10653-021-00840-2
[71] ZHAO Y Y, ZHOU Y H, ZHU Q Y, et al. Determination of antibiotic concentration in meconium and its association with fetal growth and development [J]. Environment International, 2019, 123: 70-78. doi: 10.1016/j.envint.2018.11.053
[72] ZHOU Y J, ZHU F, ZHENG D Y, et al. Detection of antibiotics in the urine of children and pregnant women in Jiangsu, China [J]. Environmental Research, 2021, 196: 110945. doi: 10.1016/j.envres.2021.110945
[73] GENG M L, LIU K Y, HUANG K, et al. Urinary antibiotic exposure across pregnancy from Chinese pregnant women and health risk assessment: Repeated measures analysis [J]. Environment International, 2020, 145: 106164. doi: 10.1016/j.envint.2020.106164
[74] ZENG X X, ZHANG L Y, CHEN Q, et al. Maternal antibiotic concentrations in pregnant women in Shanghai and their determinants: A biomonitoring-based prospective study [J]. Environment International, 2020, 138: 105638. doi: 10.1016/j.envint.2020.105638
[75] WANG H X, WANG N, QIAN J H, et al. Urinary antibiotics of pregnant women in Eastern China and cumulative health risk assessment [J]. Environmental Science & Technology, 2017, 51(6): 3518-3525.
[76] WANG H X, YANG J Q, YU X, et al. Exposure of adults to antibiotics in a Shanghai suburban area and health risk assessment: A biomonitoring-based study [J]. Environmental Science & Technology, 2018, 52(23): 13942-13950.
[77] JI K, KHO Y L, PARK Y, et al. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants [J]. Environmental Research, 2010, 110(4): 375-382. doi: 10.1016/j.envres.2010.02.008
[78] LIU S S, ZHAO G D, ZHAO H X, et al. Antibiotics in a general population: Relations with gender, body mass index (BMI) and age and their human health risks [J]. Science of the Total Environment, 2017, 599/600: 298-304. doi: 10.1016/j.scitotenv.2017.04.216
[79] ZHU Y T, LIU K Y, ZHANG J J, et al. Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study [J]. Environmental Pollution, 2020, 256: 113311. doi: 10.1016/j.envpol.2019.113311
[80] JI K, KHO Y, PARK C, et al. Influence of water and food consumption on inadvertent antibiotics intake among general population [J]. Environmental Research, 2010, 110(7): 641-649. doi: 10.1016/j.envres.2010.06.008
[81] WANG Q, DUAN Y J, WANG S P, et al. Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population [J]. Journal of Hazardous Materials, 2020, 383: 121129. doi: 10.1016/j.jhazmat.2019.121129
[82] ZHANG J J, LIU X J, ZHU Y T, et al. Antibiotic exposure across three generations from Chinese families and cumulative health risk [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110237. doi: 10.1016/j.ecoenv.2020.110237
[83] HAYWARD G N, MOORE A, MCKELVIE S, et al. Antibiotic prescribing for the older adult: Beliefs and practices in primary care [J]. Journal of Antimicrobial Chemotherapy, 2018, 74(3): 791-797.
[84] AN R, WILMS E, MASCLEE A A M, et al. Age-dependent changes in GI physiology and microbiota: Time to reconsider? [J]. Gut, 2018, 67(12): 2213-2222. doi: 10.1136/gutjnl-2017-315542
[85] CURRIE J, LIN W C, ZHANG W. Patient knowledge and antibiotic abuse: Evidence from an audit study in China [J]. Journal of Health Economics, 2011, 30(5): 933-949. doi: 10.1016/j.jhealeco.2011.05.009
[86] FLEMING-DUTRA K E, HERSH A L, SHAPIRO D J, et al. Prevalence of inappropriate antibiotic Prescriptions among US ambulatory care visits, 2010-2011 [J]. JAMA, 2016, 315(17): 1864-1873. doi: 10.1001/jama.2016.4151
[87] DAVIES S C. Reducing inappropriate prescribing of antibiotics in English primary care: Evidence and outlook [J]. Journal of Antimicrobial Chemotherapy, 2018, 73(4): 833-834. doi: 10.1093/jac/dkx535
[88] WANG J, WANG P, WANG X H, et al. Use and prescription of antibiotics in primary health care settings in China [J]. JAMA Internal Medicine, 2014, 174(12): 1914-1920. doi: 10.1001/jamainternmed.2014.5214
[89] KIM B, KIM Y, HWANG H, et al. Trends and correlation between antibiotic usage and resistance pattern among hospitalized patients at university hospitals in Korea, 2004 to 2012: A nationwide multicenter study [J]. Medicine, 2018, 97(51): e13719. doi: 10.1097/MD.0000000000013719
[90] LI Y X, XIA X Y, LI X H, et al. Correlation between the use of antibiotics and development of a resistant bacterial infection in patients in the ICU [J]. Bioscience Trends, 2018, 12(5): 517-519. doi: 10.5582/bst.2018.01130
[91] XU X W, WU X X, JIANG X G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series [J]. BMJ (Clinical Research Ed. ), 2020, 368: m606.
[92] ZHOU F, YU T, DU R H, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study [J]. The Lancet, 2020, 395(10229): 1054-1062. doi: 10.1016/S0140-6736(20)30566-3
[93] HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. The Lancet, 2020, 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5
[94] HU Y, WEI X P, ZHU Q Q, et al. COVID-19 pandemic impacts on humans taking antibiotics in China [J]. Environmental Science & Technology, 2022, 56(12): 8338-8349.
[95] MIRZAEI R, GOODARZI P, ASADI M, et al. Bacterial co-infections with SARS-CoV-2 [J]. IUBMB Life, 2020, 72(10): 2097-2111. doi: 10.1002/iub.2356
[96] JAKOBSSON H E, JERNBERG C, ANDERSSON A F, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome [J]. PLoS One, 2010, 5(3): e9836. doi: 10.1371/journal.pone.0009836
[97] KOHANSKI M A, DEPRISTO M A, COLLINS J J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis [J]. Molecular Cell, 2010, 37(3): 311-320. doi: 10.1016/j.molcel.2010.01.003
[98] WRIGHT G D. The antibiotic resistome: The nexus of chemical and genetic diversity [J]. Nature Reviews Microbiology, 2007, 5(3): 175-186. doi: 10.1038/nrmicro1614
[99] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[100] MURRAY C J L, IKUTA K S, SHARARA F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis [J]. The Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0
[101] BLAIR J M A, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance [J]. Nature Reviews Microbiology, 2015, 13(1): 42-51. doi: 10.1038/nrmicro3380
[102] JASOVSKÝ D, LITTMANN J, ZORZET A, et al. Antimicrobial resistance-a threat to the world's sustainable development [J]. Upsala Journal of Medical Sciences, 2016, 121(3): 159-164. doi: 10.1080/03009734.2016.1195900
[103] 中华人民共和国农业部公告第2292号[EB/OL].[2015-9-1]. http://www.moa.gov.cn/nybgb/2015/jiuqi/201712/t20171219_6103873.htm
[104] 中华人民共和国农业部公告第246号[EB/OL].[2016-7-26]. http://www.moa.gov.cn/nybgb/2016/dibaqi/201712/t20171219_6102822.htm
[105] 中华人民共和国农业部公告第2428号[EB/OL].[2019-12-12]. http://www.moa.gov.cn/nybgb/2020/202003/202004/t20200419_6341878.htm
[106] CHO I, YAMANISHI S, COX L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity [J]. Nature, 2012, 488(7413): 621-626. doi: 10.1038/nature11400
[107] COX L M, YAMANISHI S, SOHN J, et al. Altering the intestinal Microbiota during a critical developmental window has lasting metabolic consequences [J]. Cell, 2014, 158(4): 705-721. doi: 10.1016/j.cell.2014.05.052
[108] SAARI A, VIRTA L J, SANKILAMPI U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life [J]. Pediatrics, 2015, 135(4): 617-626. doi: 10.1542/peds.2014-3407
[109] WANG H X, WANG N, WANG B, et al. Antibiotics detected in urines and adipogenesis in school children [J]. Environment International, 2016, 89/90: 204-211. doi: 10.1016/j.envint.2016.02.005
[110] MAEDA N, TAMAGAWA T, NIKI I, et al. Increase in insulin release from rat pancreatic islets by quinolone antibiotics [J]. British Journal of Pharmacology, 1996, 117(2): 372-376. doi: 10.1111/j.1476-5381.1996.tb15201.x
[111] GHALY H, KRIETE C, SAHIN S, et al. The insulinotropic effect of fluoroquinolones [J]. Biochemical Pharmacology, 2009, 77(6): 1040-1052. doi: 10.1016/j.bcp.2008.11.019
[112] YABE K, YAMAMOTO Y, SUZUKI T, et al. Functional and morphological characteristics of pancreatic islet lesions induced by quinolone antimicrobial agent gatifloxacin in rats [J]. Toxicologic Pathology, 2019, 47(1): 35-43. doi: 10.1177/0192623318809062
[113] ALTHAQAFI A, ALI M, ALZAHRANI Y, et al. How safe are fluoroquinolones for diabetic patients?A systematic review of dysglycemic and neuropathic effects of fluoroquinolones [J]. Therapeutics and Clinical Risk Management, 2021, 17: 1083-1090. doi: 10.2147/TCRM.S284171
[114] MCWILLIAM S J, ANTOINE D J, SMYTH R L, et al. Aminoglycoside-induced nephrotoxicity in children [J]. Pediatric Nephrology, 2017, 32(11): 2015-2025. doi: 10.1007/s00467-016-3533-z
[115] BURGESS L D, DREW R H. Comparison of the incidence of vancomycin-induced nephrotoxicity in hospitalized patients with and without concomitant piperacillin-tazobactam [J]. Pharmacotherapy, 2014, 34(7): 670-676. doi: 10.1002/phar.1442
[116] MOUSAVI M, ZAPOLSKAYA T, SCIPIONE M R, et al. Comparison of rates of nephrotoxicity associated with vancomycin in combination with piperacillin-tazobactam administered as an extended versus standard infusion [J]. Pharmacotherapy, 2017, 37(3): 379-385. doi: 10.1002/phar.1901
[117] ELYASI S, KHALILI H, DASHTI-KHAVIDAKI S, et al. Vancomycin-induced nephrotoxicity: Mechanism, incidence, risk factors and special populations [J]. European Journal of Clinical Pharmacology, 2012, 68(9): 1243-1255. doi: 10.1007/s00228-012-1259-9
[118] KAN W C, CHEN Y C, WU V C, et al. Vancomycin-associated acute kidney injury: A narrative review from pathophysiology to clinical application [J]. International Journal of Molecular Sciences, 2022, 23(4): 2052. doi: 10.3390/ijms23042052
[119] SANGTHAWAN P, GEATER A F, NAORUNGROJ S, et al. Characteristics, influencing factors, predictive scoring system, and outcomes of the patients with nephrotoxicity associated with administration of intravenous colistin [J]. Antibiotics (Basel, Switzerland), 2021, 11(1): 2.
[120] JAVAN A O, SHOKOUHI S, SAHRAEI Z. A review on colistin nephrotoxicity [J]. European Journal of Clinical Pharmacology, 2015, 71(7): 801-810. doi: 10.1007/s00228-015-1865-4
[121] CHANG K, WANG H B, ZHAO J P, et al. Risk factors for polymyxin B-associated acute kidney injury [J]. International Journal of Infectious Diseases, 2022, 117: 37-44. doi: 10.1016/j.ijid.2022.01.055
[122] SRAVANI M, KRISHNAMURTHY S, PARAMESWARAN N, et al. Assessment of causality in hospitalized children with aminoglycoside-related nephrotoxicity [J]. Indian Pediatrics, 2022, 59(3): 226-229. doi: 10.1007/s13312-022-2475-8
[123] ILGIN S, CAN O D, ATLI O, et al. Ciprofloxacin-induced neurotoxicity: Evaluation of possible underlying mechanisms [J]. Toxicology Mechanisms and Methods, 2015, 25(5): 374-381. doi: 10.3109/15376516.2015.1026008
[124] LURIE I, YANG Y X, HAYNES K, et al. Antibiotic exposure and the risk for depression, anxiety, or psychosis: A nested case-control study [J]. The Journal of Clinical Psychiatry, 2015, 76(11): 1522-1528. doi: 10.4088/JCP.15m09961
[125] MURPHY J R, PAUL S, DUNLOP A L, et al. Maternal peripartum antibiotic exposure and the risk of postpartum depression [J]. Research in Nursing & Health, 2018, 41(4): 369-377.
[126] DEAN O M, KANCHANATAWAN B, ASHTON M, et al. Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial [J]. The Australian and New Zealand Journal of Psychiatry, 2017, 51(8): 829-840. doi: 10.1177/0004867417709357
[127] ZAZULA R, HUSAIN M I, MOHEBBI M, et al. Minocycline as adjunctive treatment for major depressive disorder: Pooled data from two randomized controlled trials [J]. Australian & New Zealand Journal of Psychiatry, 2021, 55(8): 784-798.
[128] HUSAIN M I, CHAUDHRY I B, RAHMAN R R, et al. Minocycline as an adjunct for treatment-resistant depressive symptoms: Study protocol for a pilot randomised controlled trial [J]. Trials, 2015, 16: 410. doi: 10.1186/s13063-015-0933-5
[129] ASHER M I, GARCÍA-MARCOS L, PEARCE N E, et al. Trends in worldwide asthma prevalence [J]. The European Respiratory Journal, 2020, 56(6): 2002094. doi: 10.1183/13993003.02094-2020
[130] GENG M L, TANG Y, LIU K Y, et al. Prenatal low-dose antibiotic exposure and children allergic diseases at 4 years of age: A prospective birth cohort study [J]. Ecotoxicology and Environmental Safety, 2021, 225: 112736. doi: 10.1016/j.ecoenv.2021.112736
[131] RISNES K R, BELANGER K, MURK W, et al. Antibiotic exposure by 6 months and asthma and allergy at 6 years: Findings in a cohort of 1, 401 US children [J]. American Journal of Epidemiology, 2010, 173(3): 310-318.
[132] PONGDEE T, LI J T. Evaluation and management of penicillin allergy [J]. Journal of the American Medical Association, 2019, 321(2): 188-199. doi: 10.1001/jama.2018.19283
[133] MORI F, PECORARI L, PANTANO S, et al. Azithromycin anaphylaxis in children [J]. International Journal of Immunopathology and Pharmacology, 2014, 27(1): 121-126. doi: 10.1177/039463201402700116
[134] SÁNCHEZ A R, ROGERS R S, SHERIDAN P J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity [J]. International Journal of Dermatology, 2004, 43(10): 709-715. doi: 10.1111/j.1365-4632.2004.02108.x
[135] ZHU Z Y, YU Q, QI G G, et al. Tigecycline-induced tooth discoloration in children younger than eight years [J]. Antimicrobial Agents and Chemotherapy, 2021, 65(9): e0085421. doi: 10.1128/AAC.00854-21
[136] HEIANZA Y, MA W J, LI X, et al. Duration and life-stage of antibiotic use and risks of all-cause and cause-specific mortality: Prospective cohort study [J]. Circulation Research, 2020, 126(3): 364-373. doi: 10.1161/CIRCRESAHA.119.315279
[137] ZHANG J J, HAINES C, WATSON A, et al. 2845. oral antibiotic use and risk of colorectal cancer in the UK, 1989-2012: A matched case-control study [J]. Gut, 2019, 68(11): 1971-1978. doi: 10.1136/gutjnl-2019-318593
[138] NITZAN O, ELIAS M, PERETZ A, et al. Role of antibiotics for treatment of inflammatory bowel disease [J]. World Journal of Gastroenterology, 2016, 22(3): 1078-1087. doi: 10.3748/wjg.v22.i3.1078