[1] |
CAMDEN J P, DIERINGER J A, WANG Y M, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J]. Journal of the American Chemical Society, 2008, 130(38): 12616-12617. doi: 10.1021/ja8051427
|
[2] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166. doi: 10.1016/0009-2614(74)85388-1
|
[3] |
JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20. doi: 10.1016/S0022-0728(77)80224-6
|
[4] |
ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217. doi: 10.1021/ja00457a071
|
[5] |
DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews, 2017, 46(13): 4042-4076. doi: 10.1039/C7CS00238F
|
[6] |
LI W Y, CAMARGO P H C, LU X M, et al. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Letters, 2009, 9(1): 485-490. doi: 10.1021/nl803621x
|
[7] |
OTTO A, BORNEMANN T, ERTÜRK Ü, et al. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surface Science, 1989, 210(3): 363-386. doi: 10.1016/0039-6028(89)90601-8
|
[8] |
WANG Q Z, XU Z H, ZHAO Y J, et al. Bio-inspired self-cleaning carbon cloth based on flower-like Ag nanoparticles and leaf-like MOF: A high-performance and reusable substrate for SERS detection of azo dyes in soft drinks [J]. Sensors and Actuators B:Chemical, 2021, 329: 129080. doi: 10.1016/j.snb.2020.129080
|
[9] |
LI H T, DAI H, ZHANG Y H, et al. Triboelectrically boosted SERS on sea-urchin-like gold clusters facilitated by a high dielectric substrate [J]. Nano Energy, 2019, 64: 103959. doi: 10.1016/j.nanoen.2019.103959
|
[10] |
JIANG P C, HU Y L, LI G K. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery [J]. Talanta, 2019, 200: 212-217. doi: 10.1016/j.talanta.2019.03.057
|
[11] |
STIUFIUC R, IACOVITA C, LUCACIU C M, et al. SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol [J]. Nanoscale Research Letters, 2013, 8(1): 47. doi: 10.1186/1556-276X-8-47
|
[12] |
JANČI T, VALINGER D, KLJUSURIĆ J G, et al. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates [J]. Food Chemistry, 2017, 224: 48-54. doi: 10.1016/j.foodchem.2016.12.032
|
[13] |
SU S, ZHANG C, YUWEN L H, et al. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18735-18741.
|
[14] |
SUN H B, LIU H, WU Y Y. A green, reusable SERS film with high sensitivity for in situ detection of thiram in apple juice [J]. Applied Surface Science, 2017, 416: 704-709. doi: 10.1016/j.apsusc.2017.04.159
|
[15] |
KAMIŃSKA A, DZIĘCIELEWSKI I, WEYHER J L, et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications [J]. Journal of Materials Chemistry, 2011, 21(24): 8662-8669. doi: 10.1039/c0jm03336g
|
[16] |
CHEN J M, HUANG Y J, KANNAN P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables [J]. Analytical Chemistry, 2016, 88(4): 2149-2155. doi: 10.1021/acs.analchem.5b03735
|
[17] |
CHEN Y M, GE F Y, GUANG S Y, et al. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis [J]. Applied Surface Science, 2018, 436: 111-116. doi: 10.1016/j.apsusc.2017.11.288
|
[18] |
KRENO L E, GREENELTCH N G, FARHA O K, et al. SERS of molecules that do not adsorb on Ag surfaces: A metal-organic framework-based functionalization strategy [J]. Analyst, 2014, 139(16): 4073-4080. doi: 10.1039/C4AN00413B
|
[19] |
LIN S, LIN X, HAN SQGW, et al. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements [J]. Analytica Chimica Acta, 2020, 1108: 167-176. doi: 10.1016/j.aca.2020.02.034
|
[20] |
JIANG Z W, GAO P F, YANG L, et al. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine [J]. Analytical Chemistry, 2015, 87(24): 12177-12182. doi: 10.1021/acs.analchem.5b03058
|
[21] |
ZHU Q L, XU Q. Metal-organic framework composites [J]. Chemical Society Reviews, 2014, 43(16): 5468-5512. doi: 10.1039/C3CS60472A
|
[22] |
LAI H S, LI G K, XU F G, et al. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering - a review [J]. Journal of Materials Chemistry C, 2020, 8(9): 2952-2963. doi: 10.1039/D0TC00040J
|
[23] |
HUANG C H, LI A L, CHEN X Y, et al. Understanding the role of metal-organic frameworks in surface‐enhanced Raman scattering application [J]. Small, 2020, 16(43): e2004802. doi: 10.1002/smll.202004802
|
[24] |
ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water [J]. Chemical Reviews, 2020, 120(16): 8378-8415. doi: 10.1021/acs.chemrev.9b00797
|
[25] |
QASEM N A A, BEN-MANSOUR R, HABIB M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177 [J]. Applied Energy, 2018, 210: 317-326. doi: 10.1016/j.apenergy.2017.11.011
|
[26] |
LI Y Z, WANG G D, SHI W J, et al. Efficient C2Hn hydrocarbons and VOC adsorption and separation in an MOF with lewis basic and acidic decorated active sites [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41785-41793.
|
[27] |
QIN Y J, HAN X, LI Y P, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis [J]. ACS Catalysis, 2020, 10(11): 5973-5978. doi: 10.1021/acscatal.0c01432
|
[28] |
LEE Y R, KIM J, AHN W S. Synthesis of metal-organic frameworks: A mini review [J]. Korean Journal of Chemical Engineering, 2013, 30(9): 1667-1680. doi: 10.1007/s11814-013-0140-6
|
[29] |
KASIK A, LIN Y S. Organic solvent pervaporation properties of MOF-5 membranes [J]. Separation and Purification Technology, 2014, 121: 38-45. doi: 10.1016/j.seppur.2013.04.033
|
[30] |
XIN Z F, BAI J F, SHEN Y M, et al. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance [J]. Crystal Growth & Design, 2010, 10(6): 2451-2454.
|
[31] |
HONG D Y, HWANG Y K, SERRE C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis [J]. Advanced Functional Materials, 2009, 19(10): 1537-1552. doi: 10.1002/adfm.200801130
|
[32] |
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953
|
[33] |
WONG-NG W, KADUK J A, WU H, et al. Synchrotron X-ray studies of metal-organic framework M2(2, 5-dihydroxyterephthalate), M = (Mn, Co, Ni, Zn) (MOF74) [J]. Powder Diffraction, 2012, 27(4): 256-262. doi: 10.1017/S0885715612000863
|
[34] |
WEHRING M, GASCON J, DUBBELDAM D, et al. Self-diffusion studies in CuBTC by PFG NMR and MD simulations [J]. The Journal of Physical Chemistry C, 2010, 114(23): 10527-10534. doi: 10.1021/jp102212w
|
[35] |
CUCHIARO H, THAI J, SCHAFFNER N, et al. Exploring the parameter space of p-cresyl sulfate adsorption in metal-organic frameworks [J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22572-22580.
|
[36] |
ORDOÑEZ M J C, BALKUS K J, FERRARIS J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. Journal of Membrane Science, 2010, 361(1/2): 28-37.
|
[37] |
WANG X, WANG Y X, YING Y B. Recent advances in sensing applications of metal nanoparticle/metal-organic framework composites [J]. TrAC Trends in Analytical Chemistry, 2021, 143: 116395. doi: 10.1016/j.trac.2021.116395
|
[38] |
高俊, 田洋, 李中峰, 等. 金属有机框架: 用于功能性表面增强拉曼散射 [J]. 科学通报, 2020, 65(35): 4027-4036. doi: 10.1360/TB-2020-0749
GAO J, TIAN Y, LI Z F, et al. Metal-organic frameworks: For functional surface enhancement Raman scattering [J]. Chinese Science Bulletin, 2020, 65(35): 4027-4036(in Chinese). doi: 10.1360/TB-2020-0749
|
[39] |
WU L L, PU H B, HUANG L J, et al. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food [J]. Food Chemistry, 2020, 328: 127105. doi: 10.1016/j.foodchem.2020.127105
|
[40] |
WANG S Q, SUN B, FENG J J, et al. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection [J]. Analytical Methods, 2020, 12(47): 5657-5670. doi: 10.1039/D0AY01760D
|
[41] |
YANG K, ZONG S F, ZHANG Y Z, et al. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing [J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1395-1403.
|
[42] |
唐嫒尧, 李鑫, 李明虓, 等. 基于金纳米颗粒的化学电阻传感器检测苯类气体 [J]. 仪表技术与传感器, 2022(1): 11-18. doi: 10.3969/j.issn.1002-1841.2022.01.002
TANG A Y, LI X, LI M X, et al. Detection of monoaromatic hydrocarbons gas with chemi-resistance sensor based on gold nanoparticles [J]. Instrument Technique and Sensor, 2022(1): 11-18(in Chinese). doi: 10.3969/j.issn.1002-1841.2022.01.002
|
[43] |
XU D, MUHAMMAD M, CHU L, et al. SERS approach to probe the adsorption process of trace volatile benzaldehyde on layered double hydroxide material [J]. Analytical Chemistry, 2021, 93(23): 8228-8237. doi: 10.1021/acs.analchem.1c00958
|
[44] |
SHAO Q C, ZHANG D, WANG C E, et al. Ag@MIL-101(Cr) film substrate with high SERS enhancement effect and uniformity [J]. The Journal of Physical Chemistry C, 2021, 125(13): 7297-7304. doi: 10.1021/acs.jpcc.1c01757
|
[45] |
RAHI A, SATTARAHMADY N, VAIS R D, et al. Sonoelectrodeposition of gold nanorods at a gold surface - Application for electrocatalytic reduction and determination of nitrofurazone [J]. Sensors and Actuators B:Chemical, 2015, 210: 96-102. doi: 10.1016/j.snb.2014.12.090
|
[46] |
NIU Z Q, LIU H M, CHEN Y, et al. Sandwich Au/SMSiO2/Ag hybrid substrate: Synthesis, characterization, and surface-enhanced Raman scattering performance [J]. Journal of Nanoparticle Research, 2020, 22(10): 333. doi: 10.1007/s11051-020-05066-4
|
[47] |
LI D, CAO X K, ZHANG Q M, et al. Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons [J]. Journal of Materials Chemistry A, 2019, 7(23): 14108-14117. doi: 10.1039/C9TA03690C
|
[48] |
ZENGIN A, TAMER U, CAYKARA T. SERS detection of polyaromatic hydrocarbons on a β-cyclodextrin containing polymer brush [J]. Journal of Raman Spectroscopy, 2018, 49(3): 452-461. doi: 10.1002/jrs.5300
|
[49] |
陈慧, 夏迪, 袁亚仙, 等. PDMS-Au复合基底上多环芳烃分子的表面增强拉曼光谱 [J]. 高等学校化学学报, 2017, 38(3): 376-382. doi: 10.7503/cjcu20160553
CHEN H, XIA D, YUAN Y X, et al. Surface enhanced Raman spectroscopic investigation of PAHs at a PDMS-Au composite substrate [J]. Chemical Journal of Chinese Universities, 2017, 38(3): 376-382(in Chinese). doi: 10.7503/cjcu20160553
|
[50] |
XU H, ZHU J H, CHENG Y X, et al. Functionalized UIO-66@Ag nanoparticles substrate for rapid and ultrasensitive SERS detection of di-(2-ethylhexyl) phthalate in plastics [J]. Sensors and Actuators B:Chemical, 2021, 349: 130793. doi: 10.1016/j.snb.2021.130793
|
[51] |
ZHANG M C, HONG W T, WU X Y, et al. A highly sensitive and direct competitive enzyme-linked immunosorbent assay for the detection of di-(2-ethylhexyl) phthalate (DEHP) in infant supplies [J]. Analytical Methods, 2015, 7(13): 5441-5446. doi: 10.1039/C5AY00207A
|
[52] |
XIANG Y, LI M H, GUO X Y, et al. Raman rapid detection of environmental hormone [J]. Sensors and Actuators B:Chemical, 2018, 262: 44-49. doi: 10.1016/j.snb.2018.01.196
|
[53] |
LAI H S, SHANG W J, YUN Y Y, et al. Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: Application to the quantitation of Malachite Green and thiram [J]. Microchimica Acta, 2019, 186(3): 144. doi: 10.1007/s00604-019-3257-4
|
[54] |
DEMIRCIOĞLU T, KAPLAN M, TEZGIN E, et al. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl [J]. Microchemical Journal, 2022, 176: 107251. doi: 10.1016/j.microc.2022.107251
|
[55] |
ZHANG M F, YANG J, WANG Y R, et al. Plasmon-coupled 3D porous hotspot architecture for super-sensitive quantitative SERS sensing of toxic substances on real sample surfaces [J]. Physical Chemistry Chemical Physics, 2019, 21(35): 19288-19297. doi: 10.1039/C9CP03058A
|
[56] |
DOMINGO J L, ROVIRA J. Effects of air pollutants on the transmission and severity of respiratory viral infections [J]. Environmental Research, 2020, 187: 109650. doi: 10.1016/j.envres.2020.109650
|
[57] |
ZHANG H M, ZHENG Z H, YU T, et al. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health [J]. Environmental Research, 2022, 205: 112550. doi: 10.1016/j.envres.2021.112550
|
[58] |
LEE H K, LEE Y H, KOH C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials [J]. Chemical Society Reviews, 2019, 48(3): 731-756. doi: 10.1039/C7CS00786H
|
[59] |
HOMAYOONNIA S, ZEINALI S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection [J]. Sensors and Actuators B:Chemical, 2016, 237: 776-786. doi: 10.1016/j.snb.2016.06.152
|
[60] |
QIAO X, SU B, LIU C, et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in Superparticle@MOF structure [J]. Advanced Materials (Deerfield Beach, Fla. ), 2018, 30(5): 1702275. doi: 10.1002/adma.201702275
|
[61] |
HUO N, LI D, ZHENG S Q, et al. MOF-based hybrid film for multiphase detection of sulfur dioxide with colorimetric and surface-enhanced Raman scattering readout [J]. Chemical Engineering Journal, 2022, 432: 134317. doi: 10.1016/j.cej.2021.134317
|
[62] |
FU Y Z, XIN M Y, CHONG J, et al. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde [J]. Journal of Materials Science, 2021, 56(6): 4151-4160. doi: 10.1007/s10853-020-05507-4
|
[63] |
PHAN-QUANG G C, YANG N C, LEE H K, et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring [J]. ACS Nano, 2019, 13(10): 12090-12099. doi: 10.1021/acsnano.9b06486
|
[64] |
ZHAI Y, XUAN T, WU Y P, et al. Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater [J]. Sensors and Actuators B:Chemical, 2021, 326: 128852. doi: 10.1016/j.snb.2020.128852
|
[65] |
MA X W, LIU H, WEN S S, et al. Ultra-sensitive SERS detection, rapid selective adsorption and degradation of cationic dyes on multifunctional magnetic metal-organic framework-based composite [J]. Nanotechnology, 2020, 31(31): 315501. doi: 10.1088/1361-6528/ab8a8f
|
[66] |
ZHAO H Y, JIN J, TIAN W J, et al. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments [J]. Journal of Materials Chemistry A, 2015, 3(8): 4330-4337. doi: 10.1039/C4TA06590E
|
[67] |
ZHANG Y N, XUE C L, LI P, et al. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds [J]. Journal of Hazardous Materials, 2022, 424: 127686. doi: 10.1016/j.jhazmat.2021.127686
|
[68] |
刘宏波, 瞿明凯, 张健琳, 等. 土壤污染物源解析技术研究进展 [J]. 环境监控与预警, 2021, 13(1): 1-6,19.
LIU H B, QU M K, ZHANG J L, et al. Research progress in source apportionment of soil pollutants [J]. Environmental Monitoring and Forewarning, 2021, 13(1): 1-6,19(in Chinese).
|
[69] |
GAO Y Z, LI H. Agro-environmental contamination, food safety and human health: An introduction to the special issue [J]. Environment International, 2021, 157: 106812. doi: 10.1016/j.envint.2021.106812
|
[70] |
LI G, SUN G X, REN Y, et al. Urban soil and human health: A review [J]. European Journal of Soil Science, 2018, 69(1): 196-215. doi: 10.1111/ejss.12518
|
[71] |
ZHOU X, LIU G Q, ZHANG H W, et al. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment [J]. Journal of Hazardous Materials, 2019, 368: 429-435. doi: 10.1016/j.jhazmat.2019.01.070
|
[72] |
WANG Q Z, ZHAO Y J, BU T, et al. Semi-sacrificial template growth-assisted self-supporting MOF chip: A versatile and high-performance SERS sensor for food contaminants monitoring [J]. Sensors and Actuators B:Chemical, 2022, 352: 131025. doi: 10.1016/j.snb.2021.131025
|