-
表面增强拉曼光谱(surface-enhanced raman spectroscopy,SERS)是一种能够快速识别待测物指纹图谱的技术,已经在环境检测领域发挥了巨大的作用,但由于某些待测物分子与传统单一贵金属基底的亲和力较弱,在一定程度上限制了其应用. 金属有机框架(metal-organic frameworks,MOFs)是一种新兴的吸附材料,具有较高的比表面积,将其与传统贵金属结合制备成SERS复合基底可在一定程度上解决上述难题,对快速、灵敏地检测环境污染物具有十分重要的意义. 本文首先介绍了SERS基底的主要发展历程及面临的瓶颈、MOFs材料应用于SERS基底的优势,然后从大气、水及土壤3种环境介质中污染物角度出发,综述了基于金属有机框架的SERS基底在环境污染物检测中的应用,探讨了该类复合基底面临的挑战和发展趋势.
基于金属有机框架的SERS基底在环境检测中的应用研究进展
Research progress on the application of metal-organic framework-based SERS substrates in environmental detection
-
摘要: 作为一种快速灵敏的指纹光谱技术,表面增强拉曼光谱技术(surface-enhanced Raman spectroscopy,SERS)在环境污染物检测领域具有很大的应用潜力,然而目前这种痕量检测技术仍存在富集目标分子困难的问题. 金属有机框架(metal organic frameworks,MOFs)材料有助于解决SERS基底的富集难题. 本文首先介绍了SERS技术的背景、目前待解决的问题、MOFs的特点和基于MOFs的复合SERS基底的优势,综述了近五年来基于MOFs的复合SERS基底在环境检测中的应用进展,并重点讨论了MOFs在其中的作用,最后初步探讨了这类复合基底目前面临的挑战及发展趋势.Abstract: Surface-enhanced Raman spectroscopy (SERS), a fingerprint spectroscopy technique with ultra-high sensitivity, has great application potential in detecting environmental pollutants. However, enriching trace target molecules with the SERS substrate is still challenging. The metal-organic frameworks (MOFs) can help solve this problem. Here, the background of SERS, the characteristics of MOFs, and the advantages of the SERS composite substrates based on MOFs were introduced first. Then, the progress and application of the composite substrates in environmental detection in the past five years were discussed. Meanwhile, the functions of MOFs in the environmental field were particularly emphasized. Finally, this composite substrate's challenges and possible development trends were tentatively discussed.
-
表 1 基于MOFs复合基底的SERS技术与其他方法检测环境污染物的检出限比较
Table 1. Comparison of the limit of detection between SERS technology based on MOFs composite substrate and other methods for environmental pollutants
环境污染物
Environmental
pollutants结构式
Structural formula方法
Methods检出限
Limit of detection参考文献
ReferenceBenzaldehyde SERS基底:Au@Ag nanocubes with ZIF-8 0.005 mg·m−3 [41] 化学电阻传感器法 2.37 mg·m−3 [42] SERS基底:AgNCs@Co-Ni LDH
(无MOFs)0.009 mg·m−3 [43] Nitrofurazone SERS基底:Ag@MIL-101(Cr) Film 1 × 10−7 mol·L−1 [44] 微分脉冲伏安法 1.8 × 10−7 mol·L−1 [45] SERS基底:Au/SMSiO2/Ag(无 MOFs) 1 × 10−6 mol·L−1 [46] Anthracene SERS基底:HKUST-1(Cu)@Ag-based SPCE 5 × 10−8 mol·L−1 [47] SERS基底:含β-环糊精的聚合物基底
(无MOFs)2.4 × 10−9 mol·L−1 [48] SERS基底:PDMS-Au(无MOFs) 1 × 10−7 mol·L−1 [49] Di-(2-ethylhexyl) phthalate SERS基底:UIO-66@AgNPs 3 × 10-12 mol·L−1 [50] 直接竞争性酶联免疫吸附法 1.08 × 10−8 mol·L−1 [51] SERS基底:Au@Ag@IP6 NPs/DT
(无MOFs)1 × 10−8 mol·L−1 [52] Thiram SERS基底:Fe3O4-Au@MIL-100(Fe) 1.5 × 10−8 mol·L−1 [53] 比色纳米探针法 5 × 10−9 mol·L−1 [54] SERS基底:AgNPs/Cu (无MOFs) 1.04 × 10−7 mol·L−1 [55] -
[1] CAMDEN J P, DIERINGER J A, WANG Y M, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J]. Journal of the American Chemical Society, 2008, 130(38): 12616-12617. doi: 10.1021/ja8051427 [2] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166. doi: 10.1016/0009-2614(74)85388-1 [3] JEANMAIRE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20. doi: 10.1016/S0022-0728(77)80224-6 [4] ALBRECHT M G, CREIGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217. doi: 10.1021/ja00457a071 [5] DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews, 2017, 46(13): 4042-4076. doi: 10.1039/C7CS00238F [6] LI W Y, CAMARGO P H C, LU X M, et al. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Letters, 2009, 9(1): 485-490. doi: 10.1021/nl803621x [7] OTTO A, BORNEMANN T, ERTÜRK Ü, et al. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver [J]. Surface Science, 1989, 210(3): 363-386. doi: 10.1016/0039-6028(89)90601-8 [8] WANG Q Z, XU Z H, ZHAO Y J, et al. Bio-inspired self-cleaning carbon cloth based on flower-like Ag nanoparticles and leaf-like MOF: A high-performance and reusable substrate for SERS detection of azo dyes in soft drinks [J]. Sensors and Actuators B:Chemical, 2021, 329: 129080. doi: 10.1016/j.snb.2020.129080 [9] LI H T, DAI H, ZHANG Y H, et al. Triboelectrically boosted SERS on sea-urchin-like gold clusters facilitated by a high dielectric substrate [J]. Nano Energy, 2019, 64: 103959. doi: 10.1016/j.nanoen.2019.103959 [10] JIANG P C, HU Y L, LI G K. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery [J]. Talanta, 2019, 200: 212-217. doi: 10.1016/j.talanta.2019.03.057 [11] STIUFIUC R, IACOVITA C, LUCACIU C M, et al. SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol [J]. Nanoscale Research Letters, 2013, 8(1): 47. doi: 10.1186/1556-276X-8-47 [12] JANČI T, VALINGER D, KLJUSURIĆ J G, et al. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates [J]. Food Chemistry, 2017, 224: 48-54. doi: 10.1016/j.foodchem.2016.12.032 [13] SU S, ZHANG C, YUWEN L H, et al. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18735-18741. [14] SUN H B, LIU H, WU Y Y. A green, reusable SERS film with high sensitivity for in situ detection of thiram in apple juice [J]. Applied Surface Science, 2017, 416: 704-709. doi: 10.1016/j.apsusc.2017.04.159 [15] KAMIŃSKA A, DZIĘCIELEWSKI I, WEYHER J L, et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications [J]. Journal of Materials Chemistry, 2011, 21(24): 8662-8669. doi: 10.1039/c0jm03336g [16] CHEN J M, HUANG Y J, KANNAN P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables [J]. Analytical Chemistry, 2016, 88(4): 2149-2155. doi: 10.1021/acs.analchem.5b03735 [17] CHEN Y M, GE F Y, GUANG S Y, et al. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis [J]. Applied Surface Science, 2018, 436: 111-116. doi: 10.1016/j.apsusc.2017.11.288 [18] KRENO L E, GREENELTCH N G, FARHA O K, et al. SERS of molecules that do not adsorb on Ag surfaces: A metal-organic framework-based functionalization strategy [J]. Analyst, 2014, 139(16): 4073-4080. doi: 10.1039/C4AN00413B [19] LIN S, LIN X, HAN SQGW, et al. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements [J]. Analytica Chimica Acta, 2020, 1108: 167-176. doi: 10.1016/j.aca.2020.02.034 [20] JIANG Z W, GAO P F, YANG L, et al. Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine [J]. Analytical Chemistry, 2015, 87(24): 12177-12182. doi: 10.1021/acs.analchem.5b03058 [21] ZHU Q L, XU Q. Metal-organic framework composites [J]. Chemical Society Reviews, 2014, 43(16): 5468-5512. doi: 10.1039/C3CS60472A [22] LAI H S, LI G K, XU F G, et al. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering - a review [J]. Journal of Materials Chemistry C, 2020, 8(9): 2952-2963. doi: 10.1039/D0TC00040J [23] HUANG C H, LI A L, CHEN X Y, et al. Understanding the role of metal-organic frameworks in surface‐enhanced Raman scattering application [J]. Small, 2020, 16(43): e2004802. doi: 10.1002/smll.202004802 [24] ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water [J]. Chemical Reviews, 2020, 120(16): 8378-8415. doi: 10.1021/acs.chemrev.9b00797 [25] QASEM N A A, BEN-MANSOUR R, HABIB M A. An efficient CO2 adsorptive storage using MOF-5 and MOF-177 [J]. Applied Energy, 2018, 210: 317-326. doi: 10.1016/j.apenergy.2017.11.011 [26] LI Y Z, WANG G D, SHI W J, et al. Efficient C2Hn hydrocarbons and VOC adsorption and separation in an MOF with lewis basic and acidic decorated active sites [J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41785-41793. [27] QIN Y J, HAN X, LI Y P, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis [J]. ACS Catalysis, 2020, 10(11): 5973-5978. doi: 10.1021/acscatal.0c01432 [28] LEE Y R, KIM J, AHN W S. Synthesis of metal-organic frameworks: A mini review [J]. Korean Journal of Chemical Engineering, 2013, 30(9): 1667-1680. doi: 10.1007/s11814-013-0140-6 [29] KASIK A, LIN Y S. Organic solvent pervaporation properties of MOF-5 membranes [J]. Separation and Purification Technology, 2014, 121: 38-45. doi: 10.1016/j.seppur.2013.04.033 [30] XIN Z F, BAI J F, SHEN Y M, et al. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance [J]. Crystal Growth & Design, 2010, 10(6): 2451-2454. [31] HONG D Y, HWANG Y K, SERRE C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis [J]. Advanced Functional Materials, 2009, 19(10): 1537-1552. doi: 10.1002/adfm.200801130 [32] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. doi: 10.1021/ja8057953 [33] WONG-NG W, KADUK J A, WU H, et al. Synchrotron X-ray studies of metal-organic framework M2(2, 5-dihydroxyterephthalate), M = (Mn, Co, Ni, Zn) (MOF74) [J]. Powder Diffraction, 2012, 27(4): 256-262. doi: 10.1017/S0885715612000863 [34] WEHRING M, GASCON J, DUBBELDAM D, et al. Self-diffusion studies in CuBTC by PFG NMR and MD simulations [J]. The Journal of Physical Chemistry C, 2010, 114(23): 10527-10534. doi: 10.1021/jp102212w [35] CUCHIARO H, THAI J, SCHAFFNER N, et al. Exploring the parameter space of p-cresyl sulfate adsorption in metal-organic frameworks [J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22572-22580. [36] ORDOÑEZ M J C, BALKUS K J, FERRARIS J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. Journal of Membrane Science, 2010, 361(1/2): 28-37. [37] WANG X, WANG Y X, YING Y B. Recent advances in sensing applications of metal nanoparticle/metal-organic framework composites [J]. TrAC Trends in Analytical Chemistry, 2021, 143: 116395. doi: 10.1016/j.trac.2021.116395 [38] 高俊, 田洋, 李中峰, 等. 金属有机框架: 用于功能性表面增强拉曼散射 [J]. 科学通报, 2020, 65(35): 4027-4036. doi: 10.1360/TB-2020-0749 GAO J, TIAN Y, LI Z F, et al. Metal-organic frameworks: For functional surface enhancement Raman scattering [J]. Chinese Science Bulletin, 2020, 65(35): 4027-4036(in Chinese). doi: 10.1360/TB-2020-0749
[39] WU L L, PU H B, HUANG L J, et al. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food [J]. Food Chemistry, 2020, 328: 127105. doi: 10.1016/j.foodchem.2020.127105 [40] WANG S Q, SUN B, FENG J J, et al. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection [J]. Analytical Methods, 2020, 12(47): 5657-5670. doi: 10.1039/D0AY01760D [41] YANG K, ZONG S F, ZHANG Y Z, et al. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing [J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1395-1403. [42] 唐嫒尧, 李鑫, 李明虓, 等. 基于金纳米颗粒的化学电阻传感器检测苯类气体 [J]. 仪表技术与传感器, 2022(1): 11-18. doi: 10.3969/j.issn.1002-1841.2022.01.002 TANG A Y, LI X, LI M X, et al. Detection of monoaromatic hydrocarbons gas with chemi-resistance sensor based on gold nanoparticles [J]. Instrument Technique and Sensor, 2022(1): 11-18(in Chinese). doi: 10.3969/j.issn.1002-1841.2022.01.002
[43] XU D, MUHAMMAD M, CHU L, et al. SERS approach to probe the adsorption process of trace volatile benzaldehyde on layered double hydroxide material [J]. Analytical Chemistry, 2021, 93(23): 8228-8237. doi: 10.1021/acs.analchem.1c00958 [44] SHAO Q C, ZHANG D, WANG C E, et al. Ag@MIL-101(Cr) film substrate with high SERS enhancement effect and uniformity [J]. The Journal of Physical Chemistry C, 2021, 125(13): 7297-7304. doi: 10.1021/acs.jpcc.1c01757 [45] RAHI A, SATTARAHMADY N, VAIS R D, et al. Sonoelectrodeposition of gold nanorods at a gold surface - Application for electrocatalytic reduction and determination of nitrofurazone [J]. Sensors and Actuators B:Chemical, 2015, 210: 96-102. doi: 10.1016/j.snb.2014.12.090 [46] NIU Z Q, LIU H M, CHEN Y, et al. Sandwich Au/SMSiO2/Ag hybrid substrate: Synthesis, characterization, and surface-enhanced Raman scattering performance [J]. Journal of Nanoparticle Research, 2020, 22(10): 333. doi: 10.1007/s11051-020-05066-4 [47] LI D, CAO X K, ZHANG Q M, et al. Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons [J]. Journal of Materials Chemistry A, 2019, 7(23): 14108-14117. doi: 10.1039/C9TA03690C [48] ZENGIN A, TAMER U, CAYKARA T. SERS detection of polyaromatic hydrocarbons on a β-cyclodextrin containing polymer brush [J]. Journal of Raman Spectroscopy, 2018, 49(3): 452-461. doi: 10.1002/jrs.5300 [49] 陈慧, 夏迪, 袁亚仙, 等. PDMS-Au复合基底上多环芳烃分子的表面增强拉曼光谱 [J]. 高等学校化学学报, 2017, 38(3): 376-382. doi: 10.7503/cjcu20160553 CHEN H, XIA D, YUAN Y X, et al. Surface enhanced Raman spectroscopic investigation of PAHs at a PDMS-Au composite substrate [J]. Chemical Journal of Chinese Universities, 2017, 38(3): 376-382(in Chinese). doi: 10.7503/cjcu20160553
[50] XU H, ZHU J H, CHENG Y X, et al. Functionalized UIO-66@Ag nanoparticles substrate for rapid and ultrasensitive SERS detection of di-(2-ethylhexyl) phthalate in plastics [J]. Sensors and Actuators B:Chemical, 2021, 349: 130793. doi: 10.1016/j.snb.2021.130793 [51] ZHANG M C, HONG W T, WU X Y, et al. A highly sensitive and direct competitive enzyme-linked immunosorbent assay for the detection of di-(2-ethylhexyl) phthalate (DEHP) in infant supplies [J]. Analytical Methods, 2015, 7(13): 5441-5446. doi: 10.1039/C5AY00207A [52] XIANG Y, LI M H, GUO X Y, et al. Raman rapid detection of environmental hormone [J]. Sensors and Actuators B:Chemical, 2018, 262: 44-49. doi: 10.1016/j.snb.2018.01.196 [53] LAI H S, SHANG W J, YUN Y Y, et al. Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: Application to the quantitation of Malachite Green and thiram [J]. Microchimica Acta, 2019, 186(3): 144. doi: 10.1007/s00604-019-3257-4 [54] DEMIRCIOĞLU T, KAPLAN M, TEZGIN E, et al. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl [J]. Microchemical Journal, 2022, 176: 107251. doi: 10.1016/j.microc.2022.107251 [55] ZHANG M F, YANG J, WANG Y R, et al. Plasmon-coupled 3D porous hotspot architecture for super-sensitive quantitative SERS sensing of toxic substances on real sample surfaces [J]. Physical Chemistry Chemical Physics, 2019, 21(35): 19288-19297. doi: 10.1039/C9CP03058A [56] DOMINGO J L, ROVIRA J. Effects of air pollutants on the transmission and severity of respiratory viral infections [J]. Environmental Research, 2020, 187: 109650. doi: 10.1016/j.envres.2020.109650 [57] ZHANG H M, ZHENG Z H, YU T, et al. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health [J]. Environmental Research, 2022, 205: 112550. doi: 10.1016/j.envres.2021.112550 [58] LEE H K, LEE Y H, KOH C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials [J]. Chemical Society Reviews, 2019, 48(3): 731-756. doi: 10.1039/C7CS00786H [59] HOMAYOONNIA S, ZEINALI S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection [J]. Sensors and Actuators B:Chemical, 2016, 237: 776-786. doi: 10.1016/j.snb.2016.06.152 [60] QIAO X, SU B, LIU C, et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in Superparticle@MOF structure [J]. Advanced Materials (Deerfield Beach, Fla. ), 2018, 30(5): 1702275. doi: 10.1002/adma.201702275 [61] HUO N, LI D, ZHENG S Q, et al. MOF-based hybrid film for multiphase detection of sulfur dioxide with colorimetric and surface-enhanced Raman scattering readout [J]. Chemical Engineering Journal, 2022, 432: 134317. doi: 10.1016/j.cej.2021.134317 [62] FU Y Z, XIN M Y, CHONG J, et al. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde [J]. Journal of Materials Science, 2021, 56(6): 4151-4160. doi: 10.1007/s10853-020-05507-4 [63] PHAN-QUANG G C, YANG N C, LEE H K, et al. Tracking airborne molecules from afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring [J]. ACS Nano, 2019, 13(10): 12090-12099. doi: 10.1021/acsnano.9b06486 [64] ZHAI Y, XUAN T, WU Y P, et al. Metal-organic-frameworks-enforced surface enhanced Raman scattering chip for elevating detection sensitivity of carbendazim in seawater [J]. Sensors and Actuators B:Chemical, 2021, 326: 128852. doi: 10.1016/j.snb.2020.128852 [65] MA X W, LIU H, WEN S S, et al. Ultra-sensitive SERS detection, rapid selective adsorption and degradation of cationic dyes on multifunctional magnetic metal-organic framework-based composite [J]. Nanotechnology, 2020, 31(31): 315501. doi: 10.1088/1361-6528/ab8a8f [66] ZHAO H Y, JIN J, TIAN W J, et al. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments [J]. Journal of Materials Chemistry A, 2015, 3(8): 4330-4337. doi: 10.1039/C4TA06590E [67] ZHANG Y N, XUE C L, LI P, et al. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds [J]. Journal of Hazardous Materials, 2022, 424: 127686. doi: 10.1016/j.jhazmat.2021.127686 [68] 刘宏波, 瞿明凯, 张健琳, 等. 土壤污染物源解析技术研究进展 [J]. 环境监控与预警, 2021, 13(1): 1-6,19. LIU H B, QU M K, ZHANG J L, et al. Research progress in source apportionment of soil pollutants [J]. Environmental Monitoring and Forewarning, 2021, 13(1): 1-6,19(in Chinese).
[69] GAO Y Z, LI H. Agro-environmental contamination, food safety and human health: An introduction to the special issue [J]. Environment International, 2021, 157: 106812. doi: 10.1016/j.envint.2021.106812 [70] LI G, SUN G X, REN Y, et al. Urban soil and human health: A review [J]. European Journal of Soil Science, 2018, 69(1): 196-215. doi: 10.1111/ejss.12518 [71] ZHOU X, LIU G Q, ZHANG H W, et al. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment [J]. Journal of Hazardous Materials, 2019, 368: 429-435. doi: 10.1016/j.jhazmat.2019.01.070 [72] WANG Q Z, ZHAO Y J, BU T, et al. Semi-sacrificial template growth-assisted self-supporting MOF chip: A versatile and high-performance SERS sensor for food contaminants monitoring [J]. Sensors and Actuators B:Chemical, 2022, 352: 131025. doi: 10.1016/j.snb.2021.131025