[1] 陈梦瑶, 杜晓丽, 于振亚, 等. 北京市道路雨水径流溶解性有机物化学组分特性 [J]. 环境科学, 2020, 41(4): 1709-1715. CHEN M Y, DU X L, YU Z Y, et al. Characteristics of chemical fractions of dissolved organic matter in road runoff in Beijing [J]. Environmental Science, 2020, 41(4): 1709-1715(in Chinese).
[2] ZHANG Y P, ZHANG B, HE Y L, et al. DOM as an indicator of occurrence and risks of antibiotics in a city-river-reservoir system with multiple pollution sources [J]. Science of the Total Environment, 2019, 686: 276-289. doi: 10.1016/j.scitotenv.2019.05.439
[3] ZHANG Q R, WANG H T, XIA X H, et al. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: Implications for the effect of climate warming [J]. Environmental Pollution, 2020, 266: 115349. doi: 10.1016/j.envpol.2020.115349
[4] DU X L, LIANG H, FANG X, et al. Characteristics of colloids and their affinity for heavy metals in road runoff with different traffic in Beijing, China [J]. Environmental Science and Pollution Research, 2021, 28(16): 20082-20092. doi: 10.1007/s11356-020-12020-3
[5] CHEN C, ZHAO K, SHANG J Y, et al. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid [J]. Environmental Pollution, 2018, 240: 219-226. doi: 10.1016/j.envpol.2018.04.095
[6] AFTABTALAB A, RINKLEBE J, SHAHEEN S M, et al. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system [J]. Chemosphere, 2022, 286: 131790. doi: 10.1016/j.chemosphere.2021.131790
[7] YANG J W, GE M T, JIN Q, et al. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media [J]. Chemosphere, 2019, 231: 405-414. doi: 10.1016/j.chemosphere.2019.05.091
[8] MUTHANNA T M, VIKLANDER M, GJESDAHL N, et al. Heavy metal removal in cold climate bioretention [J]. Water, Air, and Soil Pollution, 2007, 183(1/2/3/4): 391-402.
[9] DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: Overview of current practice and future needs [J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
[10] MAJUMDER S, NATH B, SARKAR S, et al. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: The role of organic and inorganic colloids [J]. Science of the Total Environment, 2014, 468/469: 804-812. doi: 10.1016/j.scitotenv.2013.08.087
[11] 于振亚, 杜晓丽, 王蕊, 等. 交通密度对道路雨水径流溶解性有机物污染特性的影响 [J]. 环境科学学报, 2018, 38(2): 528-535. YU Z Y, DU X L, WANG R, et al. Impact of traffic density on dissolved organic matter in road stormwater runoff [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 528-535(in Chinese).
[12] 杜晓丽, 梁卉, 闫鑫瑞, 等. 城市地表径流胶体对重金属下渗迁移行为的影响 [J]. 水资源保护, 2021, 37(1): 118-123,131. DU X L, LIANG H, YAN X R, et al. Effects of urban surface runoff colloid on infiltration and migration behavior of heavy metals [J]. Water Resources Protection, 2021, 37(1): 118-123,131(in Chinese).
[13] 刘殿威, 杜晓丽, 付霄宇, 等. 城市地表径流胶体与溶解性有机物结合特性[J]. 中国环境科学, 2022, 42 (8): 3690-3695. LIU D W, DU X L, FY X Y, et al. Characteristics of the combination between colloids and dissolved organic matter in urban surface runoff. [J]. Chinese Environmental Science , 2022, 42 (8): 3690-3695(in Chinese).
[14] GIMBERT L J, HAYGARTH P M, BECKETT R, et al. Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using sedimentation field-flow fractionation [J]. Environmental Science & Technology, 2005, 39(6): 1731-1735.
[15] KARATHANASIS A D, JOHNSON D M C. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids [J]. Science of the Total Environment, 2006, 354(2/3): 157-169.
[16] 朱国胜, 张家发, 陈劲松, 等. 宽级配粗粒土渗透试验尺寸效应及边壁效应研究 [J]. 岩土力学, 2012, 33(9): 2569-2574. ZHU G S, ZHANG J F, CHEN J S, et al. Study of size and wall effects in seepage test of broadly graded coarse materials [J]. Rock and Soil Mechanics, 2012, 33(9): 2569-2574(in Chinese).
[17] 杨亚提, 张平. 离子强度对恒电荷土壤胶体吸附Cu2+和Pb2+ 的影响 [J]. 环境化学, 2001, 20(6): 566-571. LANG Y T, ZHANG Y P. Ionic strength effects on Cu2+, Pb2+ adsorption in constant charge soil colloids [J]. Environmental Chemistry, 2001, 20(6): 566-571(in Chinese).
[18] DEEPTHI RANI R, SASIDHAR P. Sorption of cesium on clay colloids: Kinetic and thermodynamic studies [J]. Aquatic Geochemistry, 2012, 18(4): 281-296. doi: 10.1007/s10498-012-9163-6
[19] 刘毅豪. 城市道路沥青路面融雪剂损害研究[D]. 郑州: 河南大学, 2019. LIU Y H. Study on the damage of snow melting agent to asphalt pavement in urban road[D]. Zhengzhou: Henan University, 2019(in Chinese).
[20] 梁卉. 城市地表径流胶体与重金属协同污染及下渗迁移行为研究[D]. 北京: 北京建筑大学, 2020. LIANG H. Study on pollution characteristics of colloids and their affinity for heavy metals in road runoff and co-transport behavior[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020(in Chinese).
[21] AIKEN G R, HSU-KIM H, RYAN J N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids [J]. Environmental Science & Technology, 2011, 45(8): 3196-3201.
[22] AMAL R, RAPER J A, WAITE T D. Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles [J]. Journal of Colloid and Interface Science, 1992, 151(1): 244-257. doi: 10.1016/0021-9797(92)90255-K
[23] LEE S A, FANE A G, WAITE T D. Impact of natural organic matter on floc size and structure effects in membrane filtration [J]. Environmental Science & Technology, 2005, 39(17): 6477-6486.
[24] TANG X Y, WEISBROD N. Colloid-facilitated transport of lead in natural discrete fractures [J]. Environmental Pollution, 2009, 157(8/9): 2266-2274.
[25] 侯培强, 任玉芬, 王效科, 等. 北京市城市降雨径流水质评价研究 [J]. 环境科学, 2012, 33(1): 71-75. HOU P Q, REN Y F, WANG X K, et al. Research on evaluation of water quality of Beijing urban stormwater runoff [J]. Environmental Science, 2012, 33(1): 71-75(in Chinese).
[26] SUN Y L, PAN D Q, WEI X Y, et al. Insight into the stability and correlated transport of kaolinite colloid: Effect of pH, electrolytes and humic substances [J]. Environmental Pollution, 2020, 266: 115189. doi: 10.1016/j.envpol.2020.115189
[27] AMIRBAHMAN A, OLSON T M. Deposition kinetics of humic matter-coated hematite in porous media in the presence of Ca2+ [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995, 99(1): 1-10.
[28] CHEN K L, ELIMELECH M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions [J]. Journal of Colloid and Interface Science, 2007, 309(1): 126-134. doi: 10.1016/j.jcis.2007.01.074