[1] |
DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
|
[2] |
卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展 [J]. 生态毒理学报, 2022, 17(3): 385-399.
WEI C F, LI J L, SUN Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment [J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399(in Chinese).
|
[3] |
SONG R, CHI H B, MA Q L, et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis [J]. Journal of the American Chemical Society, 2021, 143(34): 13664-13674. doi: 10.1021/jacs.1c05008
|
[4] |
徐君君, 张熙茹, 杜义平, 等. UV/Cu2O/H2O2耦合强化降解左旋氧氟沙星 [J]. 环境化学, 2021, 40(5): 1342-1351. doi: 10.7524/j.issn.0254-6108.2019121602
XU J J, ZHANG X R, DU Y P, et al. Degradation of levofloxacin by UV/Cu2O/H2O2 [J]. Environmental Chemistry, 2021, 40(5): 1342-1351(in Chinese). doi: 10.7524/j.issn.0254-6108.2019121602
|
[5] |
FAN G D, YANG S W, DU B H, et al. Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO4/BiVO4: Mechanisms and kinetics [J]. Environmental Research, 2022, 204: 112032. doi: 10.1016/j.envres.2021.112032
|
[6] |
LIU X H, LIU Y, LU S Y, et al. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism [J]. Chemical Engineering Journal, 2020, 385: 123987. doi: 10.1016/j.cej.2019.123987
|
[7] |
WU H Z, HU Z Z, LIANG R H, et al. Novel Bi2Sn2O7 quantum dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine [J]. Applied Catalysis B:Environmental, 2023, 321: 122053. doi: 10.1016/j.apcatb.2022.122053
|
[8] |
WU S Q, HU Y H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics [J]. Chemical Engineering Journal, 2021, 409: 127739. doi: 10.1016/j.cej.2020.127739
|
[9] |
QI Z L, LI G Y, WANG M, et al. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water [J]. Water Research, 2022, 215: 118240. doi: 10.1016/j.watres.2022.118240
|
[10] |
CHEN Z J, WEI W, CHEN H, et al. Recent advances in waste-derived functional materials for wastewater remediation [J]. Eco-Environment & Health, 2022, 1(2): 86-104.
|
[11] |
BRILLAS E, GARCIA-SEGURA S. Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109635. doi: 10.1016/j.jece.2023.109635
|
[12] |
ARUN J, NACHIAPPAN S, RANGARAJAN G, et al. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review [J]. Environmental Chemistry Letters, 2023, 21(1): 339-362. doi: 10.1007/s10311-022-01503-z
|
[13] |
李贺希, 陈静飞, 卢聪, 等. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展 [J]. 环境化学, 2020, 39(11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
LI H X, CHEN J F, LU C, et al. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites [J]. Environmental Chemistry, 2020, 39(11): 3120-3138(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062809
|
[14] |
XU F Y, ZHANG J J, ZHU B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction [J]. Applied Catalysis B:Environmental, 2018, 230: 194-202. doi: 10.1016/j.apcatb.2018.02.042
|
[15] |
XIAO M, WANG Z L, LYU M Q, et al. Hollow nanostructures for photocatalysis: Advantages and challenges [J]. Advanced Materials, 2019, 31(38): 1801369. doi: 10.1002/adma.201801369
|
[16] |
WANG X J, FENG J, BAI Y C, et al. Synthesis, properties, and applications of hollow micro-/ nanostructures [J]. Chemical Reviews, 2016, 116(18): 10983-11060. doi: 10.1021/acs.chemrev.5b00731
|
[17] |
ZHU M Y, CHENG Y K, LUO Q, et al. A review of synthetic approaches to hollow nanostructures [J]. Materials Chemistry Frontiers, 2021, 5(6): 2552-2587. doi: 10.1039/D0QM00879F
|
[18] |
ZHAO G Q, LONG X, ZOU J, et al. Design of hollow nanostructured photocatalysts for clean energy production [J]. Coordination Chemistry Reviews, 2023, 477: 214953. doi: 10.1016/j.ccr.2022.214953
|
[19] |
WEI Y Z, WANG J Y, YU R B, et al. Constructing SrTiO3–TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting [J]. Angewandte Chemie International Edition, 2019, 58(5): 1422-1426. doi: 10.1002/anie.201812364
|
[20] |
KANG S Z, YANG Y K, BU W B, et al. TiO2 nanoparticles incorporated with CuInS2 clusters: Preparation and photocatalytic activity for degradation of 4-nitrophenol [J]. Journal of Solid State Chemistry, 2009, 182(11): 2972-2976. doi: 10.1016/j.jssc.2009.08.014
|
[21] |
HOU H L, YUAN Y F, CAO S, et al. CuInS2 nanoparticles embedded in mesoporous TiO2 nanofibers for boosted photocatalytic hydrogen production [J]. Journal of Materials Chemistry C, 2020, 8(32): 11001-11007. doi: 10.1039/D0TC02244F
|
[22] |
HAN M M, CHEN W Y, GUO H J, et al. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics [J]. Journal of Power Sources, 2016, 318: 121-127. doi: 10.1016/j.jpowsour.2016.04.011
|
[23] |
ZHANG K, ZHANG Y H, ZHANG W J. Ultrathin hexagonal SnS2 nanosheets coupled with tetragonal CuInS2 nanosheets as 2D/2D heterojunction photocatalysts toward high visible-light photocatalytic activity and stability [J]. Catalysis Letters, 2018, 148(7): 1990-2000. doi: 10.1007/s10562-018-2413-5
|
[24] |
GAO F, ZHENG Q, ZHANG Y. Stability improvement of perovskite solar cells for application of CuInS2 quantum dot-modified TiO2 nanoarrays [J]. ACS Omega, 2019, 4(2): 3432-3438. doi: 10.1021/acsomega.8b03629
|
[25] |
曾升, 周子文, 胡佳齐, 等. 二维ReS2/TiO2异质结薄膜的制备及其光电催化性能 [J]. 材料科学与工程学报, 2021, 39(5): 731-735.
ZENG S, ZHOU Z W, HU J Q, et al. Fabrication and photoeletrochemical properties of 2D-ReS2/TiO2 films [J]. Journal of Materials Science and Engineering, 2021, 39(5): 731-735(in Chinese).
|
[26] |
李坚, 石先阳. CdS/CdMoO4空心微球复合材料的化学沉淀法制备及光催化性能 [J]. 环境化学, 2018, 37(10): 2283-2290. doi: 10.7524/j.issn.0254-6108.2017112006
LI J, SHI X Y. Photocatalytic properties of CdS/CdMoO4 hollow microsphere composites synthesized by chemical precipitation method [J]. Environmental Chemistry, 2018, 37(10): 2283-2290(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112006
|
[27] |
刘顺强, 解明江, 郭学锋, 等. 混晶海胆状TiO2空心球多级结构的制备及其对亚甲基蓝的光催化降解 [J]. 无机化学学报, 2020, 36(2): 317-323. doi: 10.11862/CJIC.2020.037
LIU S Q, XIE M J, GUO X F, et al. Preparation and photocatalytic degradation of methylene blue of hierarchical mixed-phase urchin-like TiO2 hollow spheres [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 317-323(in Chinese). doi: 10.11862/CJIC.2020.037
|
[28] |
LI T T, LI X Y, ZHAO Q D, et al. Fabrication of n-type CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties [J]. Applied Catalysis B:Environmental, 2014, 156/157: 362-370. doi: 10.1016/j.apcatb.2014.03.035
|
[29] |
ZHAO Y Y, GUO H X, LIU J, et al. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: Mechanism and toxicity assessment [J]. Journal of Colloid and Interface Science, 2022, 627: 180-193. doi: 10.1016/j.jcis.2022.07.046
|
[30] |
LIU L, ZHOU L L, LIU D, et al. Improved degradation efficiency of levofloxacin by a self-powered electrochemical system with pulsed direct-current [J]. ACS Nano, 2021, 15(3): 5478-5485. doi: 10.1021/acsnano.1c00233
|
[31] |
XING Z H, WANG Z J, CHEN W H, et al. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO2/g-C3N4@AC combined electrode [J]. Journal of Environmental Management, 2023, 330: 117168. doi: 10.1016/j.jenvman.2022.117168
|
[32] |
ZHONG X, ZHANG K X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation [J]. Chemical Engineering Journal, 2020, 383: 123148. doi: 10.1016/j.cej.2019.123148
|
[33] |
ZHONG Y W, SHIH K, DIAO Z H, et al. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation [J]. Chemical Engineering Journal, 2021, 417: 129225. doi: 10.1016/j.cej.2021.129225
|
[34] |
ZENG L B, LI X Y, ZHAO Q D, et al. Boosting interfacial charge transfer and electricity generation for levofloxacin elimination in a self-driven bio-driven photoelectrocatalytic system [J]. Nanoscale, 2019, 11(45): 22042-22053. doi: 10.1039/C9NR05520G
|
[35] |
CAO T T, XU J J, CHEN M D. Construction of 2D/0D direct Z-scheme Bi4O5I2/Bi3TaO7 heterojunction photocatalysts with enhanced activity for levofloxacin degradation under visible light irradiation [J]. Separation and Purification Technology, 2022, 291: 120896. doi: 10.1016/j.seppur.2022.120896
|
[36] |
GAO B W, SUN M X, DING W, et al. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties [J]. Applied Catalysis B: Environmental, 2021, 281: 119492. doi: 10.1016/j.apcatb.2020.119492
|