-
药物的使用给人类的生产和生活带来了很多便利,但在这种便利的背后,药物过量积累对环境产生了不良影响. 以抗生素类药物为例,其主要来源包括制药产业、农业和人体代谢产物的残留[1-3]. 左氧氟沙星(LEV)是抗生素类药物的典型代表,属于广谱抗菌的氟喹诺酮类药物,常用于治疗呼吸道、泌尿道、皮肤软组织等部位的细菌感染[4]. 然而,左氧氟沙星的不合理使用会造成一系列的不良反应,如神经系统损害、光敏反应、肾脏损伤等. 此外,左氧氟沙星还会对环境造成污染,因为它在人体内的代谢不完全,会随着尿液或粪便排出,进入水体或土壤,对水生生物和农作物产生毒性作用. 因此,寻找有效的方法降解左氧氟沙星,减少其对人体和环境的危害,是一项重要的研究课题. 抗生素的抗菌性使其残留物所污染的水体或土壤难以通过传统的生物方法进行消除[5]. 此外,抗生素对紫外光的吸收能力有限,单独使用紫外光照射进行去除效果并不理想[6].
光电催化是一种利用光照和催化剂同时作用于有机污染物,使其在低于单一电催化的能耗下完成氧化还原反应,从而实现降解或矿化的技术[3, 7-8]. 已证实光电催化是一种有效的处理难生物降解物质的水处理技术,具有广阔的应用前景[9]. 光电催化方法的关键是选择合适的催化剂. 目前,常用的光电催化剂主要是半导体材料,如二氧化钛[7]、锌氧化物、硫化镉等[10]. 这些材料具有较高的光催化活性和稳定性,但也存在一些缺点,如带隙较大,只能利用紫外光;载流子复合速率高,导致光生电子-空穴对无法有效参与反应;表面活性位数量限制反应速率等. 为了解决这些问题,研究者提出了多种优化策略,如掺杂、负载、复合等. 二氧化钛是一种常用的光催化剂,具有良好的化学稳定性、热稳定性、分散性. 但是带隙宽,仅能对紫外光响应[11]. 可以通过掺杂、复合、负载等方法调节其能带结构和表面性质,提高其光催化活性和稳定性,扩大其光响应范围和应用领域[12-13]. 硫铟铜是一种具有层状结构的金属硫属化合物,具有较低的带隙(约1.5 eV)和较宽的光谱响应范围,制备过程简单、无毒性和较高的催化活性[14]. 空心多级结构是一种在光催化领域中大放异彩的新型3D结构[15-16],多级壳层可以提供大量的活性位点和较高的比表面积,增强光催化剂的反应活性和稳定性. 多级空隙可以缓解体积变化和结构应力,防止光催化剂的腐蚀和失活. 较薄的壳层相较于块状材料可以促进光生载流子的分离和传输,提高光利用效率和光催化效率[17-18].
基于此,本文采用次序模板法制备中空三层的二氧化钛作为基底,随后通过水热硫化法将CuInS2负载于3S-TiO2内外表面,形成了一种2D/3D的CuInS2@3S-TiO2复合异质结构. 随后,将上述材料负载于泡沫镍电极上,作为光阳极用于光电催化降解LEV,探讨了CuInS2@3S-TiO2的电子转移路径以及光电催化活性来源.
CuInS2@3S-TiO2复合材料的制备及光电催化降解左氧氟沙星的性能
Preparation of CuInS2@3S-TiO2 composites and performance study of photo-electric catalysis degradation of levofloxacin
-
摘要: 近年来,研究与开发高效实用的新型污水处理技术,尤其是对难降解有毒有害污染物进行高效去除的技术,已成为环境领域的科学前沿和热点问题. 光电催化技术作为一种新兴的高级氧化技术,具有反应条件温和、可利用太阳光、适用性广、无二次污染等优点,在污水处理领域具有广阔的应用前景. 光电催化的核心在于催化剂的设计,而中空多级材料是一种在光催化领域极具前景的特殊结构. 本文通过采用次序模板法合成了不同层数的中空多壳层二氧化钛,并利用水热法修饰并制备了不同比例的CuInS2@3S-TiO2的Z型异质结构复合催化剂. 通过构建光阳极主导的光电催化系统降解左氧氟沙星(LEV),并对系列降解参数进行了优化,同时探究了系统的降解机理. 通过XPS、Mott-Schottky等测试,验证了电子的转移路径,并证实CuInS2@3S-TiO2所组成的异质结构可以扩展光吸收范围、提升光电流密度、促进光生电子和空穴的分离. 此外,光电极在实际使用中也表现出良好的循环稳定性. 通过猝灭实验证明了其活性物质种类及其优势活性物种,并通过一系列对照实验证实了结构所带来的优势以及系统设计的合理性. 通过以上实验证实结构工程与异质结的组合设计实现了对降解效率与矿化效率的调控,并对空间界面上实现级联可能存在的催化机制进行了探讨. 结果显示,CuInS2(5%)@3S-TiO2在7.5 mA·cm−2、未调整pH(5.5)和25 ℃的优化条件下,该系统对LEV的降解效率在40 min内可达到93.7%.Abstract: Research and development of efficient and practical new wastewater treatment technologies, particularly for the efficient removal of persistent toxic and hazardous pollutants, has become a cutting-edge and high-priority issue in the field of environmental science. Photocatalysis, as an emerging advanced oxidation technology, offers advantages such as mild reaction conditions, utilization of solar energy, wide applicability, and absence of secondary pollution, making it highly promising for wastewater treatment applications. The key to photocatalysis lies in catalyst design, and hollow multistage materials represent a special structure with great potential in the field of photocatalysis. In this study, hollow multishell layers of titanium dioxide with varying numbers of layers were synthesized using a sequential template method, and Z-scheme heterostructured composite catalysts with different CuInS2@3S-TiO2 ratios were modified and prepared using a hydrothermal method. A photocatalytic system dominated by the photoanode was constructed for the degradation of levofloxacin (LEV), and a series of degradation parameters were optimized to investigate the degradation mechanism of the system. Experimental results confirmed the pathways of electron transfer through XPS, Mott-Schottky, and other tests. It was also confirmed that the heterostructure composed of CuInS2@3S-TiO2 extended the light absorption range, enhanced the photocurrent density, and promoted the separation of photogenerated electrons and holes. The photovoltaic electrodes also demonstrated good cycling stability during practical use. Quenching experiments confirmed the active substance species and dominant active species. Control experiments further confirmed the advantages of the structure and the rationality of the system design. The combination of structural engineering and heterojunction design in this study achieved regulation of both degradation efficiency and mineralization efficiency. Additionally, the possible catalytic mechanisms for achieving cascade reactions at the spatial interface were explored. The results showed that the degradation efficiency of LEV by CuInS2(5%)@3S-TiO2 could reach 93.7% within 40 minutes under the optimized conditions of 7.5 mA·cm−2, unadjusted pH (5.5), and 25 ℃.
-
图 2 (a)CuInS2的SEM图;(b) 3S-TiO2的SEM图; (c) CuInS2@3S-TiO2的SEM图; (d) CuInS2@3S-TiO2的TEM图; (e) CuInS2@3S-TiO2局部放大的TEM图;(f-k)CuInS2@3S-TiO2的元素映射图;(l)所制备材料的XRD图谱
Figure 2. (a) SEM image of CuInS2; (b) SEM image of 3S-TiO2; (c) SEM image of CuInS2@3S-TiO2; (d) TEM image of CuInS2@3S-TiO2; (e) TEM image of CuInS2@3S-TiO2 with local enlargement; (f-k) elemental mapping of CuInS2@3S-TiO2; (l) XRD pattern of the prepared materials
图 4 (a) CuInS2(5%)@3S-TiO2的XPS光谱;3S-TiO2和CuInS2(5%)@3S-TiO2的(b)Ti 2p和(c)O 1s的XPS光谱;CuInS2和CuInS2(5%)@3S-TiO2的(d) In 3d, (e) Cu 2p和(f) S 2p的XPS光谱
Figure 4. (a) XPS survey spectra of CuInS2(5%)@3S-TiO2; XPS spectra of (b) Ti 2p and (c) O 1s of 3S-TiO2 and CuInS2(5%)@3S-TiO2; XPS spectra of (d) In 3d, (e) Cu 2p and (f) S 2p of CuInS2 and CuInS2(5%)@3S-TiO2.
图 7 (a) 泡沫镍吸附,单纯光照,CuInS2@3S-TiO2/NF光电极在光催化、电催化、光电催化5种实验条件下降解LEV;(b)不同负载比例;(c)不同电流密度;(d)不同pH;条件下的光电催化降解LEV (e)降解40 min过程中的全谱图;(f)循环降解实验
Figure 7. (a) Nickel foam adsorption, light experiments, degradation experiments of CuInS2@3S-TiO2/NF photoelectrodes under photocatalytic, electrocatalytic and photo-electrocatalytic experimental conditions; (b) different loading ratios; (c) different current densities; (d) photo-electrocatalytic degradation of LEV under different pH; conditions; (e) full spectrum during 40 minutes of degradation; (f) cyclic degradation experiments
-
[1] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406 [2] 卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展 [J]. 生态毒理学报, 2022, 17(3): 385-399. WEI C F, LI J L, SUN Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment [J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399(in Chinese).
[3] SONG R, CHI H B, MA Q L, et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis [J]. Journal of the American Chemical Society, 2021, 143(34): 13664-13674. doi: 10.1021/jacs.1c05008 [4] 徐君君, 张熙茹, 杜义平, 等. UV/Cu2O/H2O2耦合强化降解左旋氧氟沙星 [J]. 环境化学, 2021, 40(5): 1342-1351. doi: 10.7524/j.issn.0254-6108.2019121602 XU J J, ZHANG X R, DU Y P, et al. Degradation of levofloxacin by UV/Cu2O/H2O2 [J]. Environmental Chemistry, 2021, 40(5): 1342-1351(in Chinese). doi: 10.7524/j.issn.0254-6108.2019121602
[5] FAN G D, YANG S W, DU B H, et al. Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO4/BiVO4: Mechanisms and kinetics [J]. Environmental Research, 2022, 204: 112032. doi: 10.1016/j.envres.2021.112032 [6] LIU X H, LIU Y, LU S Y, et al. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism [J]. Chemical Engineering Journal, 2020, 385: 123987. doi: 10.1016/j.cej.2019.123987 [7] WU H Z, HU Z Z, LIANG R H, et al. Novel Bi2Sn2O7 quantum dots/TiO2 nanotube arrays S-scheme heterojunction for enhanced photoelectrocatalytic degradation of sulfamethazine [J]. Applied Catalysis B:Environmental, 2023, 321: 122053. doi: 10.1016/j.apcatb.2022.122053 [8] WU S Q, HU Y H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics [J]. Chemical Engineering Journal, 2021, 409: 127739. doi: 10.1016/j.cej.2020.127739 [9] QI Z L, LI G Y, WANG M, et al. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water [J]. Water Research, 2022, 215: 118240. doi: 10.1016/j.watres.2022.118240 [10] CHEN Z J, WEI W, CHEN H, et al. Recent advances in waste-derived functional materials for wastewater remediation [J]. Eco-Environment & Health, 2022, 1(2): 86-104. [11] BRILLAS E, GARCIA-SEGURA S. Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109635. doi: 10.1016/j.jece.2023.109635 [12] ARUN J, NACHIAPPAN S, RANGARAJAN G, et al. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review [J]. Environmental Chemistry Letters, 2023, 21(1): 339-362. doi: 10.1007/s10311-022-01503-z [13] 李贺希, 陈静飞, 卢聪, 等. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展 [J]. 环境化学, 2020, 39(11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809 LI H X, CHEN J F, LU C, et al. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites [J]. Environmental Chemistry, 2020, 39(11): 3120-3138(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062809
[14] XU F Y, ZHANG J J, ZHU B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction [J]. Applied Catalysis B:Environmental, 2018, 230: 194-202. doi: 10.1016/j.apcatb.2018.02.042 [15] XIAO M, WANG Z L, LYU M Q, et al. Hollow nanostructures for photocatalysis: Advantages and challenges [J]. Advanced Materials, 2019, 31(38): 1801369. doi: 10.1002/adma.201801369 [16] WANG X J, FENG J, BAI Y C, et al. Synthesis, properties, and applications of hollow micro-/ nanostructures [J]. Chemical Reviews, 2016, 116(18): 10983-11060. doi: 10.1021/acs.chemrev.5b00731 [17] ZHU M Y, CHENG Y K, LUO Q, et al. A review of synthetic approaches to hollow nanostructures [J]. Materials Chemistry Frontiers, 2021, 5(6): 2552-2587. doi: 10.1039/D0QM00879F [18] ZHAO G Q, LONG X, ZOU J, et al. Design of hollow nanostructured photocatalysts for clean energy production [J]. Coordination Chemistry Reviews, 2023, 477: 214953. doi: 10.1016/j.ccr.2022.214953 [19] WEI Y Z, WANG J Y, YU R B, et al. Constructing SrTiO3–TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting [J]. Angewandte Chemie International Edition, 2019, 58(5): 1422-1426. doi: 10.1002/anie.201812364 [20] KANG S Z, YANG Y K, BU W B, et al. TiO2 nanoparticles incorporated with CuInS2 clusters: Preparation and photocatalytic activity for degradation of 4-nitrophenol [J]. Journal of Solid State Chemistry, 2009, 182(11): 2972-2976. doi: 10.1016/j.jssc.2009.08.014 [21] HOU H L, YUAN Y F, CAO S, et al. CuInS2 nanoparticles embedded in mesoporous TiO2 nanofibers for boosted photocatalytic hydrogen production [J]. Journal of Materials Chemistry C, 2020, 8(32): 11001-11007. doi: 10.1039/D0TC02244F [22] HAN M M, CHEN W Y, GUO H J, et al. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics [J]. Journal of Power Sources, 2016, 318: 121-127. doi: 10.1016/j.jpowsour.2016.04.011 [23] ZHANG K, ZHANG Y H, ZHANG W J. Ultrathin hexagonal SnS2 nanosheets coupled with tetragonal CuInS2 nanosheets as 2D/2D heterojunction photocatalysts toward high visible-light photocatalytic activity and stability [J]. Catalysis Letters, 2018, 148(7): 1990-2000. doi: 10.1007/s10562-018-2413-5 [24] GAO F, ZHENG Q, ZHANG Y. Stability improvement of perovskite solar cells for application of CuInS2 quantum dot-modified TiO2 nanoarrays [J]. ACS Omega, 2019, 4(2): 3432-3438. doi: 10.1021/acsomega.8b03629 [25] 曾升, 周子文, 胡佳齐, 等. 二维ReS2/TiO2异质结薄膜的制备及其光电催化性能 [J]. 材料科学与工程学报, 2021, 39(5): 731-735. ZENG S, ZHOU Z W, HU J Q, et al. Fabrication and photoeletrochemical properties of 2D-ReS2/TiO2 films [J]. Journal of Materials Science and Engineering, 2021, 39(5): 731-735(in Chinese).
[26] 李坚, 石先阳. CdS/CdMoO4空心微球复合材料的化学沉淀法制备及光催化性能 [J]. 环境化学, 2018, 37(10): 2283-2290. doi: 10.7524/j.issn.0254-6108.2017112006 LI J, SHI X Y. Photocatalytic properties of CdS/CdMoO4 hollow microsphere composites synthesized by chemical precipitation method [J]. Environmental Chemistry, 2018, 37(10): 2283-2290(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112006
[27] 刘顺强, 解明江, 郭学锋, 等. 混晶海胆状TiO2空心球多级结构的制备及其对亚甲基蓝的光催化降解 [J]. 无机化学学报, 2020, 36(2): 317-323. doi: 10.11862/CJIC.2020.037 LIU S Q, XIE M J, GUO X F, et al. Preparation and photocatalytic degradation of methylene blue of hierarchical mixed-phase urchin-like TiO2 hollow spheres [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(2): 317-323(in Chinese). doi: 10.11862/CJIC.2020.037
[28] LI T T, LI X Y, ZHAO Q D, et al. Fabrication of n-type CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties [J]. Applied Catalysis B:Environmental, 2014, 156/157: 362-370. doi: 10.1016/j.apcatb.2014.03.035 [29] ZHAO Y Y, GUO H X, LIU J, et al. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: Mechanism and toxicity assessment [J]. Journal of Colloid and Interface Science, 2022, 627: 180-193. doi: 10.1016/j.jcis.2022.07.046 [30] LIU L, ZHOU L L, LIU D, et al. Improved degradation efficiency of levofloxacin by a self-powered electrochemical system with pulsed direct-current [J]. ACS Nano, 2021, 15(3): 5478-5485. doi: 10.1021/acsnano.1c00233 [31] XING Z H, WANG Z J, CHEN W H, et al. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO2/g-C3N4@AC combined electrode [J]. Journal of Environmental Management, 2023, 330: 117168. doi: 10.1016/j.jenvman.2022.117168 [32] ZHONG X, ZHANG K X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation [J]. Chemical Engineering Journal, 2020, 383: 123148. doi: 10.1016/j.cej.2019.123148 [33] ZHONG Y W, SHIH K, DIAO Z H, et al. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation [J]. Chemical Engineering Journal, 2021, 417: 129225. doi: 10.1016/j.cej.2021.129225 [34] ZENG L B, LI X Y, ZHAO Q D, et al. Boosting interfacial charge transfer and electricity generation for levofloxacin elimination in a self-driven bio-driven photoelectrocatalytic system [J]. Nanoscale, 2019, 11(45): 22042-22053. doi: 10.1039/C9NR05520G [35] CAO T T, XU J J, CHEN M D. Construction of 2D/0D direct Z-scheme Bi4O5I2/Bi3TaO7 heterojunction photocatalysts with enhanced activity for levofloxacin degradation under visible light irradiation [J]. Separation and Purification Technology, 2022, 291: 120896. doi: 10.1016/j.seppur.2022.120896 [36] GAO B W, SUN M X, DING W, et al. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties [J]. Applied Catalysis B: Environmental, 2021, 281: 119492. doi: 10.1016/j.apcatb.2020.119492