[1] |
崔姗姗, 李占彬, 朱平, 等. 贵州遵义地区镉大气沉降通量与表层土壤分布特征[J]. 环境化学, 2022, 41(4): 1324-1334. doi: 10.7524/j.issn.0254-6108.2020122001
CUI S S, LI Z B, ZHU P, et al. Atmospheric deposition flux of cadmium and distribution characteristics of surface soil in Zunyi, Guizhou[J]. Environmental Chemistry, 2022, 41(4): 1324-1334 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122001
|
[2] |
HE S Y, HE Z L, YANG X E, et al. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils[J]. Advances in Agronomy, 2015, 134: 135-225.
|
[3] |
International Agency for Research on Cancer (IARC). A review of human carcinogens-Part C: Arsenic, metals, fibres, and dusts [R]. Lyon, 2012.
|
[4] |
EFSA) E F S A. Cadmium in food - Scientific opinion of the panel on contaminants in the food chain[J]. EFSA Journal, 2009, 7(3): 980.
|
[5] |
SUHANI I, SAHAB S, SRIVASTAVA V, et al. Impact of cadmium pollution on food safety and human health[J]. Current Opinion in Toxicology, 2021, 27: 1-7. doi: 10.1016/j.cotox.2021.04.004
|
[6] |
全国土壤污染状况调查公报[R]. 北京: 环境保护部, 2014.
National soil contamination survey report[R]. Beijing: Ministry of Environmental Protection of China, 2014 (in Chinese) .
|
[7] |
SANTOS I C, MESQUITA R B R, RANGEL A O S S. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters[J]. Analytica Chimica Acta, 2015, 891: 171-178. doi: 10.1016/j.aca.2015.08.021
|
[8] |
陈晓晨, 黄艺佳, 赵桐, 等. 中国典型土壤中镉的生物可给性影响因素研究及其健康风险评估[J]. 环境化学, 2021, 40(10): 3015-3023. doi: 10.7524/j.issn.0254-6108.2021040204
CHEN X C, HUANG Y J, ZHAO T, et al. Influencing factors of Cd bioaccessibility in China’s representative soils and the human health risk assessment[J]. Environmental Chemistry, 2021, 40(10): 3015-3023 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021040204
|
[9] |
任杰, 刘晓文, 吴颖欣, 等. 不同尺度水稻土对镉的吸附解吸特征与定量分析研究[J]. 环境化学, 2020, 39(11): 3200-3212. doi: 10.7524/j.issn.0254-6108.2019082703
REN J, LIU X W, WU Y X, et al. Research of adsorption and desorption characteristics and quantitative analysis of cadmium in Paddy Soils with different scales[J]. Environmental Chemistry, 2020, 39(11): 3200-3212 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019082703
|
[10] |
LI S, ZHANG C C, WANG S N, et al. Electrochemical microfluidics techniques for heavy metal ion detection[J]. The Analyst, 2018, 143(18): 4230-4246. doi: 10.1039/C8AN01067F
|
[11] |
ROBARDS K, WORSFOLD P. Cadmium: Toxicology and analysis. A review[J]. The Analyst, 1991, 116(6): 549-568. doi: 10.1039/an9911600549
|
[12] |
WU P, LI C H, CHEN J B, et al. Determination of cadmium in biological samples: An update from 2006 to 2011[J]. Applied Spectroscopy Reviews, 2012, 47(5): 327-370. doi: 10.1080/05704928.2012.665401
|
[13] |
MCCARTY L S, MACKAY D. Enhancing ecotoxicological modeling and assessment. body residues and modes of toxic action[J]. Environmental Science & Technology, 1993, 27(9): 1718-1728.
|
[14] |
LEE B G, LEE J S, LUOMA S N, et al. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments[J]. Environmental Science & Technology, 2000, 34(21): 4517-4523.
|
[15] |
TANG X Y, ZHU Y G, CUI Y S, et al. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China[J]. Environment International, 2006, 32(5): 682-689. doi: 10.1016/j.envint.2006.03.003
|
[16] |
侯启会, 马安周, 庄绪亮, 等. 微生物全细胞传感器在重金属生物可利用度监测中的研究进展[J]. 环境科学, 2013, 34(1): 347-356. doi: 10.13227/j.hjkx.2013.01.013
HOU Q H, MA A Z, ZHUANG X L, et al. Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor[J]. Environmental Science, 2013, 34(1): 347-356 (in Chinese). doi: 10.13227/j.hjkx.2013.01.013
|
[17] |
KIM H J, JEONG H, LEE S J. Synthetic biology for microbial heavy metal biosensors[J]. Analytical and Bioanalytical Chemistry, 2018, 410(4): 1191-1203. doi: 10.1007/s00216-017-0751-6
|
[18] |
CORBISIER P, JI G, NUYTS G, et al. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid PI258[J]. FEMS Microbiology Letters, 1993, 110(2): 231-238. doi: 10.1111/j.1574-6968.1993.tb06325.x
|
[19] |
BIRAN I, BABAI R, LEVCOV K, et al. Online and in situ monitoring of environmental pollutants: Electrochemical biosensing of cadmium[J]. Environmental Microbiology, 2000, 2(3): 285-290. doi: 10.1046/j.1462-2920.2000.00103.x
|
[20] |
BEREZA-MALCOLM L, ARACIC S, KANNAN R B, et al. Functional characterization of Gram-negative bacteria from different Genera as multiplex cadmium biosensors[J]. Biosensors and Bioelectronics, 2017, 94: 380-387. doi: 10.1016/j.bios.2017.03.029
|
[21] |
HUI C Y, GUO Y, LIU L S, et al. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: A mini-review[J]. World Journal of Microbiology and Biotechnology, 2022, 38(1): 9. doi: 10.1007/s11274-021-03198-w
|
[22] |
LIU C J, YU H, ZHANG B C, et al. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants[J]. Biotechnology Advances, 2022, 60: 108019. doi: 10.1016/j.biotechadv.2022.108019
|
[23] |
AMARO F, TURKEWITZ A P, MARTÍN-GONZÁLEZ A, et al. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila[J]. Microbial Biotechnology, 2011, 4(4): 513-522. doi: 10.1111/j.1751-7915.2011.00252.x
|
[24] |
CHOUTEAU C, DZYADEVYCH S, CHOVELON J M, et al. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae[J]. Biosensors and Bioelectronics, 2004, 19(9): 1089-1096. doi: 10.1016/j.bios.2003.10.012
|
[25] |
HAN X J, LI C, YONG D M. Microbial electrode sensor for heavy-metal ions[J]. Sensors and Materials, 2019, 31(12): 4103. doi: 10.18494/SAM.2019.2645
|
[26] |
DELATOUR E, PAGNOUT C, ZAFFINO M L, et al. Comparative analysis of cell metabolic activity sensing by Escherichia coli rrnB P1- lux and Cd responsive- Lux biosensors: Time-resolved experiments and mechanistic modelling[J]. Biosensors, 2022, 12(9): 763. doi: 10.3390/bios12090763
|
[27] |
MIYAWAKI A, LLOPIS J, HEIM R, et al. Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin[J]. Nature, 1997, 388(6645): 882-887. doi: 10.1038/42264
|
[28] |
CHIU T Y, CHEN P H, CHANG C L, et al. Live-cell dynamic sensing of Cd2+ with a FRET-based indicator[J]. PLOS ONE, 2013, 8(6): e65853. doi: 10.1371/journal.pone.0065853
|
[29] |
JOE M H, LEE K H, LIM S Y, et al. Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans[J]. Bioprocess and Biosystems Engineering, 2012, 35(1): 265-272.
|
[30] |
TAURIAINEN S, KARP M, CHANG W, et al. Luminescent bacterial sensor for cadmium and lead[J]. Biosensors and Bioelectronics, 1998, 13(9): 931-938. doi: 10.1016/S0956-5663(98)00027-X
|
[31] |
HYNNINEN A, TÕNISMANN K, VIRTA M. Improving the sensitivity of bacterial bioreporters for heavy metals[J]. Bioengineered Bugs, 2010, 1(2): 132-138. doi: 10.4161/bbug.1.2.10902
|
[32] |
KUMAR S, VERMA N, SINGH A K. Development of cadmium specific recombinant biosensor and its application in milk samples[J]. Sensors and Actuators B: Chemical, 2017, 240: 248-254. doi: 10.1016/j.snb.2016.08.160
|
[33] |
YOON Y, KIM S, CHAE Y, et al. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils[J]. PLOS ONE, 2016, 11(5): e0154506. doi: 10.1371/journal.pone.0154506
|
[34] |
SHETTY R S, DEO S K, SHAH P, et al. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria[J]. Analytical and Bioanalytical Chemistry, 2003, 376(1): 11-17. doi: 10.1007/s00216-003-1862-9
|
[35] |
LEBRUN M, AUDURIER A, COSSART P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917[J]. Journal of Bacteriology, 1994, 176(10): 3049-3061. doi: 10.1128/jb.176.10.3049-3061.1994
|
[36] |
NUCIFORA G, CHU L, MISRA T K, et al. Cadmium resistance from Staphylococcus aureus plasmid PI258 cadA gene results from a cadmium-efflux ATPase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3544-3548.
|
[37] |
OUTTEN C E, OUTTEN F W, O'HALLORAN T V. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli[J]. The Journal of Biological Chemistry, 1999, 274(53): 37517-37524. doi: 10.1074/jbc.274.53.37517
|
[38] |
LEE S W, GLICKMANN E, COOKSEY D A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator[J]. Applied and Environmental Microbiology, 2001, 67(4): 1437-1444. doi: 10.1128/AEM.67.4.1437-1444.2001
|
[39] |
BUSENLEHNER L S, WENG T C, PENNER-HAHN J E, et al. Elucidation of primary (α3N) and vestigial (α5) heavy metal-binding sites in Staphylococcus aureus PI258 CadC: Evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins[J]. Journal of Molecular Biology, 2002, 319(3): 685-701. doi: 10.1016/S0022-2836(02)00299-1
|
[40] |
BUSENLEHNER L S, PENNELLA M A, GIEDROC D P. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 131-143.
|
[41] |
LIAO V H C, CHIEN M T, TSENG Y Y, et al. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors[J]. Environmental Pollution, 2006, 142(1): 17-23. doi: 10.1016/j.envpol.2005.09.021
|
[42] |
PERMINA E, KAZAKOV A, KALININA O, et al. Comparative genomics of regulation of heavy metal resistance in Eubacteria[J]. BMC Microbiology, 2006, 6(1): 49. doi: 10.1186/1471-2180-6-49
|
[43] |
CHANGELA A, CHEN K, XUE Y, et al. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR[J]. Science, 2003, 301(5638): 1383-1387. doi: 10.1126/science.1085950
|
[44] |
BROCKLEHURST K R, HOBMAN J L, LAWLEY B, et al. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli[J]. Molecular Microbiology, 1999, 31(3): 893-902. doi: 10.1046/j.1365-2958.1999.01229.x
|
[45] |
RIETHER K, -A DOLLARD M, BILLARD P. Assessment of heavy metal bioavailability using Escherichia coli zntAp: Lux and copAp: Lux-based biosensors[J]. Applied Microbiology and Biotechnology, 2001, 57(5): 712-716.
|
[46] |
IVASK A, VIRTA M, KAHRU A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil[J]. Soil Biology and Biochemistry, 2002, 34(10): 1439-1447. doi: 10.1016/S0038-0717(02)00088-3
|
[47] |
LIU X C, HU Q Y, YANG J M, et al. Selective cadmium regulation mediated by a cooperative binding mechanism in CadR[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20398-20403.
|
[48] |
TAO H C, PENG Z W, LI P S, et al. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR[J]. Biotechnology Letters, 2013, 35(8): 1253-1258. doi: 10.1007/s10529-013-1216-4
|
[49] |
ZHANG G B, HU S T, JIA X Q. Highly sensitive whole-cell biosensor for cadmium detection based on a negative feedback circuit[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 799781. doi: 10.3389/fbioe.2021.799781
|
[50] |
BAKSH K A, ZAMBLE D B. Allosteric control of metal-responsive transcriptional regulators in bacteria[J]. Journal of Biological Chemistry, 2020, 295(6): 1673-1684. doi: 10.1074/jbc.REV119.011444
|
[51] |
AKBOĞA D, SALTEPE B, BOZKURT E U, et al. A recombinase-based genetic circuit for heavy metal monitoring[J]. Biosensors, 2022, 12(2): 122. doi: 10.3390/bios12020122
|
[52] |
HE M Y, LIN Y J, KAO Y L, et al. Sensitive and specific cadmium biosensor developed by reconfiguring metal transport and leveraging natural gene repositories[J]. ACS Sensors, 2021, 6(3): 995-1002. doi: 10.1021/acssensors.0c02204
|
[53] |
SOMAYAJI A, SARKAR S, BALASUBRAMANIAM S, et al. Synthetic biology techniques to tackle heavy metal pollution and poisoning[J]. Synthetic and Systems Biotechnology, 2022, 7(3): 841-846. doi: 10.1016/j.synbio.2022.04.007
|
[54] |
HAKKILA K M, NIKANDER P A, JUNTTILA S M, et al. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution[J]. Applied and Environmental Microbiology, 2011, 77(17): 6215-6224. doi: 10.1128/AEM.00662-11
|
[55] |
CAI Y S, ZHU K L, SHEN L, et al. Evolved biosensor with high sensitivity and specificity for measuring cadmium in actual environmental samples[J]. Environmental Science & Technology, 2022, 56(14): 10062-10071.
|
[56] |
JIA X Q, LIU T, MA Y B, et al. Construction of cadmium whole-cell biosensors and circuit amplification[J]. Applied Microbiology and Biotechnology, 2021, 105(13): 5689-5699. doi: 10.1007/s00253-021-11403-x
|
[57] |
WU C H, LE D, MULCHANDANI A, et al. Optimization of a whole-cell cadmium sensor with a toggle gene circuit[J]. Biotechnology Progress, 2009, 25(3): 898-903. doi: 10.1002/btpr.203
|
[58] |
YOON Y, KANG Y, LEE W, et al. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis[J]. Journal of Microbiology and Biotechnology, 2018, 28(2): 323-329. doi: 10.4014/jmb.1710.10012
|
[59] |
IVASK A, FRANÇOIS M, KAHRU A, et al. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters[J]. Chemosphere, 2004, 55(2): 147-156. doi: 10.1016/j.chemosphere.2003.10.064
|
[60] |
HOU Q H, MA A Z, WANG T, et al. Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set[J]. Analytical and Bioanalytical Chemistry, 2015, 407(22): 6865-6871. doi: 10.1007/s00216-015-8830-z
|
[61] |
BEABOUT K, BERNHARDS C B, THAKUR M, et al. Optimization of heavy metal sensors based on transcription factors and cell-free expression systems[J]. ACS Synthetic Biology, 2021, 10(11): 3040-3054. doi: 10.1021/acssynbio.1c00331
|
[62] |
HOU Q H, MA A Z, LI Y, et al. Assessing the effect of phosphate and silicate on Cd bioavailability in soil using an Escherichia coli cadAp: Luc-based whole-cell sensor[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 890-896.
|
[63] |
GIREESH-BABU P, CHAUDHARI A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor[J]. Molecular Biology Reports, 2012, 39(12): 11225-11229. doi: 10.1007/s11033-012-2033-x
|
[64] |
ELCIN E, ÖKTEM H A. Inorganic cadmium detection using a fluorescent whole-cell bacterial bioreporter[J]. Analytical Letters, 2020, 53(17): 2715-2733. doi: 10.1080/00032719.2020.1755867
|
[65] |
HURDEBISE Q, TARAYRE C, FISCHER C, et al. Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry[J]. Sensors, 2015, 15(4): 8981-8999. doi: 10.3390/s150408981
|
[66] |
KIM Y, CHOI H, SHIN W H, et al. Development of colorimetric whole-cell biosensor for detection of heavy metals in environment for public health[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12721. doi: 10.3390/ijerph182312721
|
[67] |
ZHANG C Y, SIDDIQUI S, NAVARRETE P M, et al. An integrated whole-cell detection platform for heavy metal ions[J]. IEEE Sensors Journal, 2020, 20(9): 4959-4967. doi: 10.1109/JSEN.2020.2964642
|
[68] |
HUI C Y, GUO Y, GAO C X, et al. A tailored indigoidine-based whole-cell biosensor for detecting toxic cadmium in environmental water samples[J]. Environmental Technology & Innovation, 2022, 27: 102511.
|
[69] |
GUO Y, HUI C Y, ZHANG N X, et al. Development of cadmium multiple-signal biosensing and bioadsorption systems based on artificial Cad operons[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 585617. doi: 10.3389/fbioe.2021.585617
|
[70] |
HUI C Y, GUO Y, WU J, et al. Detection of bioavailable cadmium by double-color fluorescence based on a dual-sensing bioreporter system[J]. Frontiers in Microbiology, 2021, 12: 696195. doi: 10.3389/fmicb.2021.696195
|
[71] |
HUI C Y, GUO Y, LI H, et al. Differential detection of bioavailable mercury and cadmium based on a robust dual-sensing bacterial biosensor[J]. Frontiers in Microbiology, 2022, 13: 846524. doi: 10.3389/fmicb.2022.846524
|
[72] |
PARK J N, SOHN M J, OH D B, et al. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems[J]. Applied and Environmental Microbiology, 2007, 73(19): 5990-6000. doi: 10.1128/AEM.00863-07
|
[73] |
ABDU N, ABDULLAHI A A, ABDULKADIR A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1): 65-84. doi: 10.1007/s10311-016-0587-x
|
[74] |
WANG B J, BARAHONA M, BUCK M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals[J]. Biosensors and Bioelectronics, 2013, 40(1): 368-376. doi: 10.1016/j.bios.2012.08.011
|
[75] |
BEREZA-MALCOLM L T, MANN G, FRANKS A E. Environmental sensing of heavy metals through whole cell microbial biosensors: A synthetic biology approach[J]. ACS Synthetic Biology, 2015, 4(5): 535-546. doi: 10.1021/sb500286r
|