-
镉是一种普遍的环境污染物,已被国际癌症研究机构列为一级致癌物[1 − 3]. 镉具有较高的迁移性,易被农作物吸收从而进入食物链,人体通过饮食和呼吸摄入等途径长期接触镉可对肾脏、骨骼和淋巴等组织器官造成不同程度的危害[4 − 5]. 镉是我国土壤的主要重金属污染物,工业和农业发展导致约7.0%的土壤镉浓度超标(0.3 mg·kg−1)[2, 6]. 因此,面对严峻的镉污染现状,对环境中的镉进行准确的检测至关重要. 目前,镉的检测方法主要包括分光光度法[7]、原子发射光谱法[8]、原子吸收光谱法[9]、电化学法[10]和质谱法[1]等物理化学分析方法[11 − 12]. 这些方法通常需要结合繁琐的样品前处理手段,设备较昂贵,操作复杂,样品检测成本较高. 此外,这些传统分析方法多集中于镉总量分析,无法准确评估环境中镉的生物有效性. 生物有效性又称生物可利用度,一般指污染物由结合态转化为自由态后被生物吸收,并在生物体内靶点富集产生不良影响[13 − 14]. 镉的环境行为和生态健康风险主要与其在环境介质中的生物有效性有关[15]. 因此,对环境中的镉进行生物有效性检测是开展其环境风险评估和污染治理的重要前提.
镉全细胞生物传感器(cadmium whole-cell biosensors, Cd-WCBs)以微生物为载体,利用微生物自然进化出的调节元件重组成新的模块化基因回路,可响应胞内Cd2+并输出随Cd2+浓度变化的信号,是一种简单的镉生物有效性检测方法[16 − 17]. 1993年,Corbisier等以cadC为识别元件,lux为报告元件首次设计了基于转录因子的Cd-WCBs[18]. 随着对微生物与镉相互作用机制认识的深入,新的镉转录调控因子(如ZntR和CadR)被发现,通过结合不同的报告元件(如gfp和mcherry)和底盘微生物(如Escherichia coli和Pseudomonas putida),目前已构建了多种Cd-WCBs[19 − 20]. 另外,多种基于合成生物学的优化策略已被用于提高Cd-WCBs的检测灵敏度和特异性,推动了其在实际环境中的应用[21 − 22].
本文介绍了Cd-WCBs的分类和设计原理,从传感元件、传感模块和底盘细胞等方面总结了基于转录因子的Cd-WCBs常用优化策略,综述了Cd-WCBs在镉生物有效性检测中的应用现状,并讨论了Cd-WCBs在实际应用中的主要问题和未来发展方向.
镉全细胞微生物传感器研究进展
Research progress of cadmium whole-cell biosensors
-
摘要: 镉全细胞微生物传感器(cadmium whole-cell biosensors,Cd-WCBs)以微生物为载体,利用微生物的调节元件组成模块化基因回路,以实现镉生物有效性的简单、经济和高通量检测. 本文概述了基于转录因子和酶生物传感器构建的非特异性Cd-WCBs,以及基于转录因子和荧光共振能量转移构建的特异性Cd-WCBs. 本文还总结了Cd-WCBs的基本优化策略,主要包括对识别蛋白进行定向改造或定向进化、利用反馈调控优化基因回路以及改造底盘细胞的金属调控系统. 目前,Cd-WCBs已经用于不同环境介质中镉的生物有效性检测,但是其在实际环境中细胞活性,和检测性能仍有待提高. 本研究指出未来可通过开发和改造底盘生物来提高传感器的环境适应能力,利用多种合成生物学手段进一步提高传感器的检测灵敏度和特异性.Abstract: Cadmium whole-cell biosensor (Cd-WCB), which contains a modular genetic circuit assembled by microbial regulation elements, can detect cadmium bioavailability in a simple, low-cost and high-through way. This study outlined the non-specific Cd-WCBs based on transcription factors and enzyme biosensors, and specific Cd-WCBs based on transcription factors and fluorescence resonance energy transfer. The optimization strategies of Cd-WCBs were summarized in this study, including directed mutagenesis and directed evolution of recognition proteins, optimization of genetic circuits with feedback loops, and modification of metalloregulatory system in chassis cells. Cd-WCBs have been applied for the assessment of cadmium bioavailability in different environmental samples, but the viability and detection performance in the actual environment need to be further improved. In future, chassis cells are suggested to be developed and modified to enhance the environmental adaptability of Cd-WCBs, and multiple synthetic biologic methods can be combined to improve the sensitivity and specificity of Cd-WCBs.
-
Key words:
- cadmium /
- whole-cell biosensor /
- bioavailability /
- environmental detection /
- specificity /
- sensitivity /
- recognition element /
- reporter.
-
表 1 已开发出的镉全细胞传感器
Table 1. Developed whole-cell biosensor for cadmium
调控蛋白基因
Regulatory protein gene底盘细胞
Chassis cells报告基因
Reporter gene检出限/(µg·L−1)
Limit of detection干扰离子
Interfering ions诱导时间/min
Induction time应用
Application参考文献
ReferencescadC Staphylococcus aureus lux 56 Bi3+、Pb2+ 120 — a [18] Escherichia coli lux 56 Bi3+、Pb2+ 60 — a Staphylococcus aureus luc 1.12 Pb2+、Sb3+ 120 — a [30] Bacillus subtilis luc 0.37 Sb3+、Zn2+、Sn4+ 120 — a [30] Escherichia coli gfp 10 Nb 15—30 牛奶 [32] Escherichia coli gfp 0.011 Pb2+、Sb3+ 120 沉积物、
土壤[41] Escherichia coli lacZ、rs-gfp 0.001 Pb2+、Zn2+ 120 — a [34] Staphylococcus aureus luc 100 Pb2+ 120 土壤 [59] Escherichia coli luc 1.12 Pb2+ 150 土壤 [60] — a gfp 56 Pb2+、Zn2+ 15 — a [61] Escherichia coli luc 11.2 — a 120 土壤 [62] zntR Escherichia coli gfp 11.2 Hg2+ 60 — a [58] Escherichia coli gfp 5 Hg2+、Zn2+ 960 — a [63] Escherichia coli lacZ 2.8 Nb 60 淡水、海水、土壤 [19] Escherichia coli lux 1.12 Hg2+、Pb2+、Zn2+ 60 — a [45] Escherichia coli egfp 500 Cr4+、Pb2+、Zn2+ 150 土壤 [33] Escherichia coli gfp 2 Hg2+、Zn2+ 90 — a [64] Escherichia coli gfp 1 Pb2+、Zn2+ 180 土壤 [65] Escherichia coli mcherry 200 Hg2+、Cu2+ 240 — a [66] Escherichia coli gfp 44.8 Pb2+、Zn2+ 120 — a [67] Escherichia coli luc 4.48 Hg2+、Zn2+ 120 土壤 [46] cadR Escherichia coli gfp 0.336 Nb 480 灌溉水、尿样 [52] Pseudomonas putida gfp 1.12 Nb 240 — a [57] Escherichia coli gfp 11.2 Hg2+、Zn2+ 120 — a [48] Escherichia coli gfp 112 Nb 840 — a [51] Escherichia coli gfp 0.45 Nb 120 河水、土壤 [55] Escherichia coli mcherry、bpsA、pcpS 5.48 Pb2+、Zn2+ 240 自来水、地表水 [68] Escherichia coli gfp、rfp 500 As3+、Hg2+、Pb2+ 240 地下水、海水 [20] Pseudomonas aeruginosa PAO-1 gfp、rfp 100 Hg2+、Pb2+ 240 地下水、海水 [20] Shewanella oneidensis MR-1 gfp、rfp 10000 Hg2+ 240 地下水、海水 [20] Enterobacter spp. NCR3 gfp、rfp 250 Hg2+、Pb2+ 240 地下水、海水 [20] Enterobacter spp. LCR17 gfp、rfp 1000 Hg2+、Pb2+ 240 地下水、海水 [20] Pseudomonas putida mcherry 1.12 Nb 360 — a [56] Pseudomonas putida mcherry 0.011 Nb 240 河水 [49] Pseudomonas putida lux 0.01 Pb2+、Zn2+ 180 — a [31] Pseudomonas putida rfp、egfp、lacZ 11.2 Hg2+ 1200 — a [69] cadC、cadR Escherichia coli egfp、mcherry 5.6 Nb 480 自来水、湖水 [70] cadR、merR Escherichia coli gfp、mcherry 11 Nb 480 — a [71] SEO1 Hansenula polymorpha gfp 112 Hg2+、As3+ 120 — a [72] crtⅠ Deinococcus radiodurans crtl 1.12 Nb — a — a [29] a. 文献未报导相关信息,以“—”表示;b. 该文献中Cd-WCBs在一定浓度范围内不受其他离子干扰.
a. “—” represents no relevant information was reported in the reference; b. Cd-WCBs in the reference are not disturbed by other ions in a certain concentration range. -
[1] 崔姗姗, 李占彬, 朱平, 等. 贵州遵义地区镉大气沉降通量与表层土壤分布特征[J]. 环境化学, 2022, 41(4): 1324-1334. doi: 10.7524/j.issn.0254-6108.2020122001 CUI S S, LI Z B, ZHU P, et al. Atmospheric deposition flux of cadmium and distribution characteristics of surface soil in Zunyi, Guizhou[J]. Environmental Chemistry, 2022, 41(4): 1324-1334 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122001
[2] HE S Y, HE Z L, YANG X E, et al. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils[J]. Advances in Agronomy, 2015, 134: 135-225. [3] International Agency for Research on Cancer (IARC). A review of human carcinogens-Part C: Arsenic, metals, fibres, and dusts [R]. Lyon, 2012. [4] EFSA) E F S A. Cadmium in food - Scientific opinion of the panel on contaminants in the food chain[J]. EFSA Journal, 2009, 7(3): 980. [5] SUHANI I, SAHAB S, SRIVASTAVA V, et al. Impact of cadmium pollution on food safety and human health[J]. Current Opinion in Toxicology, 2021, 27: 1-7. doi: 10.1016/j.cotox.2021.04.004 [6] 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 2014. National soil contamination survey report[R]. Beijing: Ministry of Environmental Protection of China, 2014 (in Chinese) .
[7] SANTOS I C, MESQUITA R B R, RANGEL A O S S. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters[J]. Analytica Chimica Acta, 2015, 891: 171-178. doi: 10.1016/j.aca.2015.08.021 [8] 陈晓晨, 黄艺佳, 赵桐, 等. 中国典型土壤中镉的生物可给性影响因素研究及其健康风险评估[J]. 环境化学, 2021, 40(10): 3015-3023. doi: 10.7524/j.issn.0254-6108.2021040204 CHEN X C, HUANG Y J, ZHAO T, et al. Influencing factors of Cd bioaccessibility in China’s representative soils and the human health risk assessment[J]. Environmental Chemistry, 2021, 40(10): 3015-3023 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021040204
[9] 任杰, 刘晓文, 吴颖欣, 等. 不同尺度水稻土对镉的吸附解吸特征与定量分析研究[J]. 环境化学, 2020, 39(11): 3200-3212. doi: 10.7524/j.issn.0254-6108.2019082703 REN J, LIU X W, WU Y X, et al. Research of adsorption and desorption characteristics and quantitative analysis of cadmium in Paddy Soils with different scales[J]. Environmental Chemistry, 2020, 39(11): 3200-3212 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019082703
[10] LI S, ZHANG C C, WANG S N, et al. Electrochemical microfluidics techniques for heavy metal ion detection[J]. The Analyst, 2018, 143(18): 4230-4246. doi: 10.1039/C8AN01067F [11] ROBARDS K, WORSFOLD P. Cadmium: Toxicology and analysis. A review[J]. The Analyst, 1991, 116(6): 549-568. doi: 10.1039/an9911600549 [12] WU P, LI C H, CHEN J B, et al. Determination of cadmium in biological samples: An update from 2006 to 2011[J]. Applied Spectroscopy Reviews, 2012, 47(5): 327-370. doi: 10.1080/05704928.2012.665401 [13] MCCARTY L S, MACKAY D. Enhancing ecotoxicological modeling and assessment. body residues and modes of toxic action[J]. Environmental Science & Technology, 1993, 27(9): 1718-1728. [14] LEE B G, LEE J S, LUOMA S N, et al. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments[J]. Environmental Science & Technology, 2000, 34(21): 4517-4523. [15] TANG X Y, ZHU Y G, CUI Y S, et al. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China[J]. Environment International, 2006, 32(5): 682-689. doi: 10.1016/j.envint.2006.03.003 [16] 侯启会, 马安周, 庄绪亮, 等. 微生物全细胞传感器在重金属生物可利用度监测中的研究进展[J]. 环境科学, 2013, 34(1): 347-356. doi: 10.13227/j.hjkx.2013.01.013 HOU Q H, MA A Z, ZHUANG X L, et al. Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor[J]. Environmental Science, 2013, 34(1): 347-356 (in Chinese). doi: 10.13227/j.hjkx.2013.01.013
[17] KIM H J, JEONG H, LEE S J. Synthetic biology for microbial heavy metal biosensors[J]. Analytical and Bioanalytical Chemistry, 2018, 410(4): 1191-1203. doi: 10.1007/s00216-017-0751-6 [18] CORBISIER P, JI G, NUYTS G, et al. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid PI258[J]. FEMS Microbiology Letters, 1993, 110(2): 231-238. doi: 10.1111/j.1574-6968.1993.tb06325.x [19] BIRAN I, BABAI R, LEVCOV K, et al. Online and in situ monitoring of environmental pollutants: Electrochemical biosensing of cadmium[J]. Environmental Microbiology, 2000, 2(3): 285-290. doi: 10.1046/j.1462-2920.2000.00103.x [20] BEREZA-MALCOLM L, ARACIC S, KANNAN R B, et al. Functional characterization of Gram-negative bacteria from different Genera as multiplex cadmium biosensors[J]. Biosensors and Bioelectronics, 2017, 94: 380-387. doi: 10.1016/j.bios.2017.03.029 [21] HUI C Y, GUO Y, LIU L S, et al. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: A mini-review[J]. World Journal of Microbiology and Biotechnology, 2022, 38(1): 9. doi: 10.1007/s11274-021-03198-w [22] LIU C J, YU H, ZHANG B C, et al. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants[J]. Biotechnology Advances, 2022, 60: 108019. doi: 10.1016/j.biotechadv.2022.108019 [23] AMARO F, TURKEWITZ A P, MARTÍN-GONZÁLEZ A, et al. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila[J]. Microbial Biotechnology, 2011, 4(4): 513-522. doi: 10.1111/j.1751-7915.2011.00252.x [24] CHOUTEAU C, DZYADEVYCH S, CHOVELON J M, et al. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae[J]. Biosensors and Bioelectronics, 2004, 19(9): 1089-1096. doi: 10.1016/j.bios.2003.10.012 [25] HAN X J, LI C, YONG D M. Microbial electrode sensor for heavy-metal ions[J]. Sensors and Materials, 2019, 31(12): 4103. doi: 10.18494/SAM.2019.2645 [26] DELATOUR E, PAGNOUT C, ZAFFINO M L, et al. Comparative analysis of cell metabolic activity sensing by Escherichia coli rrnB P1- lux and Cd responsive- Lux biosensors: Time-resolved experiments and mechanistic modelling[J]. Biosensors, 2022, 12(9): 763. doi: 10.3390/bios12090763 [27] MIYAWAKI A, LLOPIS J, HEIM R, et al. Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin[J]. Nature, 1997, 388(6645): 882-887. doi: 10.1038/42264 [28] CHIU T Y, CHEN P H, CHANG C L, et al. Live-cell dynamic sensing of Cd2+ with a FRET-based indicator[J]. PLOS ONE, 2013, 8(6): e65853. doi: 10.1371/journal.pone.0065853 [29] JOE M H, LEE K H, LIM S Y, et al. Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans[J]. Bioprocess and Biosystems Engineering, 2012, 35(1): 265-272. [30] TAURIAINEN S, KARP M, CHANG W, et al. Luminescent bacterial sensor for cadmium and lead[J]. Biosensors and Bioelectronics, 1998, 13(9): 931-938. doi: 10.1016/S0956-5663(98)00027-X [31] HYNNINEN A, TÕNISMANN K, VIRTA M. Improving the sensitivity of bacterial bioreporters for heavy metals[J]. Bioengineered Bugs, 2010, 1(2): 132-138. doi: 10.4161/bbug.1.2.10902 [32] KUMAR S, VERMA N, SINGH A K. Development of cadmium specific recombinant biosensor and its application in milk samples[J]. Sensors and Actuators B: Chemical, 2017, 240: 248-254. doi: 10.1016/j.snb.2016.08.160 [33] YOON Y, KIM S, CHAE Y, et al. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils[J]. PLOS ONE, 2016, 11(5): e0154506. doi: 10.1371/journal.pone.0154506 [34] SHETTY R S, DEO S K, SHAH P, et al. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria[J]. Analytical and Bioanalytical Chemistry, 2003, 376(1): 11-17. doi: 10.1007/s00216-003-1862-9 [35] LEBRUN M, AUDURIER A, COSSART P. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917[J]. Journal of Bacteriology, 1994, 176(10): 3049-3061. doi: 10.1128/jb.176.10.3049-3061.1994 [36] NUCIFORA G, CHU L, MISRA T K, et al. Cadmium resistance from Staphylococcus aureus plasmid PI258 cadA gene results from a cadmium-efflux ATPase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3544-3548. [37] OUTTEN C E, OUTTEN F W, O'HALLORAN T V. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli[J]. The Journal of Biological Chemistry, 1999, 274(53): 37517-37524. doi: 10.1074/jbc.274.53.37517 [38] LEE S W, GLICKMANN E, COOKSEY D A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator[J]. Applied and Environmental Microbiology, 2001, 67(4): 1437-1444. doi: 10.1128/AEM.67.4.1437-1444.2001 [39] BUSENLEHNER L S, WENG T C, PENNER-HAHN J E, et al. Elucidation of primary (α3N) and vestigial (α5) heavy metal-binding sites in Staphylococcus aureus PI258 CadC: Evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins[J]. Journal of Molecular Biology, 2002, 319(3): 685-701. doi: 10.1016/S0022-2836(02)00299-1 [40] BUSENLEHNER L S, PENNELLA M A, GIEDROC D P. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 131-143. [41] LIAO V H C, CHIEN M T, TSENG Y Y, et al. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors[J]. Environmental Pollution, 2006, 142(1): 17-23. doi: 10.1016/j.envpol.2005.09.021 [42] PERMINA E, KAZAKOV A, KALININA O, et al. Comparative genomics of regulation of heavy metal resistance in Eubacteria[J]. BMC Microbiology, 2006, 6(1): 49. doi: 10.1186/1471-2180-6-49 [43] CHANGELA A, CHEN K, XUE Y, et al. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR[J]. Science, 2003, 301(5638): 1383-1387. doi: 10.1126/science.1085950 [44] BROCKLEHURST K R, HOBMAN J L, LAWLEY B, et al. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli[J]. Molecular Microbiology, 1999, 31(3): 893-902. doi: 10.1046/j.1365-2958.1999.01229.x [45] RIETHER K, -A DOLLARD M, BILLARD P. Assessment of heavy metal bioavailability using Escherichia coli zntAp: Lux and copAp: Lux-based biosensors[J]. Applied Microbiology and Biotechnology, 2001, 57(5): 712-716. [46] IVASK A, VIRTA M, KAHRU A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil[J]. Soil Biology and Biochemistry, 2002, 34(10): 1439-1447. doi: 10.1016/S0038-0717(02)00088-3 [47] LIU X C, HU Q Y, YANG J M, et al. Selective cadmium regulation mediated by a cooperative binding mechanism in CadR[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41): 20398-20403. [48] TAO H C, PENG Z W, LI P S, et al. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR[J]. Biotechnology Letters, 2013, 35(8): 1253-1258. doi: 10.1007/s10529-013-1216-4 [49] ZHANG G B, HU S T, JIA X Q. Highly sensitive whole-cell biosensor for cadmium detection based on a negative feedback circuit[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 799781. doi: 10.3389/fbioe.2021.799781 [50] BAKSH K A, ZAMBLE D B. Allosteric control of metal-responsive transcriptional regulators in bacteria[J]. Journal of Biological Chemistry, 2020, 295(6): 1673-1684. doi: 10.1074/jbc.REV119.011444 [51] AKBOĞA D, SALTEPE B, BOZKURT E U, et al. A recombinase-based genetic circuit for heavy metal monitoring[J]. Biosensors, 2022, 12(2): 122. doi: 10.3390/bios12020122 [52] HE M Y, LIN Y J, KAO Y L, et al. Sensitive and specific cadmium biosensor developed by reconfiguring metal transport and leveraging natural gene repositories[J]. ACS Sensors, 2021, 6(3): 995-1002. doi: 10.1021/acssensors.0c02204 [53] SOMAYAJI A, SARKAR S, BALASUBRAMANIAM S, et al. Synthetic biology techniques to tackle heavy metal pollution and poisoning[J]. Synthetic and Systems Biotechnology, 2022, 7(3): 841-846. doi: 10.1016/j.synbio.2022.04.007 [54] HAKKILA K M, NIKANDER P A, JUNTTILA S M, et al. Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution[J]. Applied and Environmental Microbiology, 2011, 77(17): 6215-6224. doi: 10.1128/AEM.00662-11 [55] CAI Y S, ZHU K L, SHEN L, et al. Evolved biosensor with high sensitivity and specificity for measuring cadmium in actual environmental samples[J]. Environmental Science & Technology, 2022, 56(14): 10062-10071. [56] JIA X Q, LIU T, MA Y B, et al. Construction of cadmium whole-cell biosensors and circuit amplification[J]. Applied Microbiology and Biotechnology, 2021, 105(13): 5689-5699. doi: 10.1007/s00253-021-11403-x [57] WU C H, LE D, MULCHANDANI A, et al. Optimization of a whole-cell cadmium sensor with a toggle gene circuit[J]. Biotechnology Progress, 2009, 25(3): 898-903. doi: 10.1002/btpr.203 [58] YOON Y, KANG Y, LEE W, et al. Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis[J]. Journal of Microbiology and Biotechnology, 2018, 28(2): 323-329. doi: 10.4014/jmb.1710.10012 [59] IVASK A, FRANÇOIS M, KAHRU A, et al. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters[J]. Chemosphere, 2004, 55(2): 147-156. doi: 10.1016/j.chemosphere.2003.10.064 [60] HOU Q H, MA A Z, WANG T, et al. Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set[J]. Analytical and Bioanalytical Chemistry, 2015, 407(22): 6865-6871. doi: 10.1007/s00216-015-8830-z [61] BEABOUT K, BERNHARDS C B, THAKUR M, et al. Optimization of heavy metal sensors based on transcription factors and cell-free expression systems[J]. ACS Synthetic Biology, 2021, 10(11): 3040-3054. doi: 10.1021/acssynbio.1c00331 [62] HOU Q H, MA A Z, LI Y, et al. Assessing the effect of phosphate and silicate on Cd bioavailability in soil using an Escherichia coli cadAp: Luc-based whole-cell sensor[J]. Environmental Science. Processes & Impacts, 2014, 16(4): 890-896. [63] GIREESH-BABU P, CHAUDHARI A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor[J]. Molecular Biology Reports, 2012, 39(12): 11225-11229. doi: 10.1007/s11033-012-2033-x [64] ELCIN E, ÖKTEM H A. Inorganic cadmium detection using a fluorescent whole-cell bacterial bioreporter[J]. Analytical Letters, 2020, 53(17): 2715-2733. doi: 10.1080/00032719.2020.1755867 [65] HURDEBISE Q, TARAYRE C, FISCHER C, et al. Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry[J]. Sensors, 2015, 15(4): 8981-8999. doi: 10.3390/s150408981 [66] KIM Y, CHOI H, SHIN W H, et al. Development of colorimetric whole-cell biosensor for detection of heavy metals in environment for public health[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12721. doi: 10.3390/ijerph182312721 [67] ZHANG C Y, SIDDIQUI S, NAVARRETE P M, et al. An integrated whole-cell detection platform for heavy metal ions[J]. IEEE Sensors Journal, 2020, 20(9): 4959-4967. doi: 10.1109/JSEN.2020.2964642 [68] HUI C Y, GUO Y, GAO C X, et al. A tailored indigoidine-based whole-cell biosensor for detecting toxic cadmium in environmental water samples[J]. Environmental Technology & Innovation, 2022, 27: 102511. [69] GUO Y, HUI C Y, ZHANG N X, et al. Development of cadmium multiple-signal biosensing and bioadsorption systems based on artificial Cad operons[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 585617. doi: 10.3389/fbioe.2021.585617 [70] HUI C Y, GUO Y, WU J, et al. Detection of bioavailable cadmium by double-color fluorescence based on a dual-sensing bioreporter system[J]. Frontiers in Microbiology, 2021, 12: 696195. doi: 10.3389/fmicb.2021.696195 [71] HUI C Y, GUO Y, LI H, et al. Differential detection of bioavailable mercury and cadmium based on a robust dual-sensing bacterial biosensor[J]. Frontiers in Microbiology, 2022, 13: 846524. doi: 10.3389/fmicb.2022.846524 [72] PARK J N, SOHN M J, OH D B, et al. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems[J]. Applied and Environmental Microbiology, 2007, 73(19): 5990-6000. doi: 10.1128/AEM.00863-07 [73] ABDU N, ABDULLAHI A A, ABDULKADIR A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1): 65-84. doi: 10.1007/s10311-016-0587-x [74] WANG B J, BARAHONA M, BUCK M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals[J]. Biosensors and Bioelectronics, 2013, 40(1): 368-376. doi: 10.1016/j.bios.2012.08.011 [75] BEREZA-MALCOLM L T, MANN G, FRANKS A E. Environmental sensing of heavy metals through whole cell microbial biosensors: A synthetic biology approach[J]. ACS Synthetic Biology, 2015, 4(5): 535-546. doi: 10.1021/sb500286r