[1] |
OECD, Reconciling terminology of the universe of per- and polyfluoroalkyl substances: Recommendations and practical guidance [R]. OECD Series on Risk Management, No. 61, OECD Publishing, Paris, 2021.
|
[2] |
KISSA E. Toxicology and environmental aspects in fluorinated surfactants and repellents [M]. 2nd ed. Marcel Dekker: New York, 2001, 97: 456-461.
|
[3] |
YUE Y, FAN J Q, XIN G Q, et al. Comprehensive understanding of fluoroacetate dehalogenase-catalyzed degradation of fluorocarboxylic acids: A QM/MM approach[J]. Environmental Science & Technology, 2021, 55(14): 9817-9825.
|
[4] |
YANG X H, LYAKURWA F, XIE H B, et al. Different binding mechanisms of neutral and anionic poly-/ perfluorinated chemicals to human transthyretin revealed by In silico models[J]. Chemosphere, 2017, 182: 574-583. doi: 10.1016/j.chemosphere.2017.05.016
|
[5] |
DU Z W, DENG S B, ZHANG S Y, et al. Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite[J]. Environmental Science & Technology, 2017, 51(14): 8027-8035.
|
[6] |
SCHAIDER L A, BALAN S A, BLUM A, et al. Fluorinated compounds in U. S. fast food packaging[J]. Environmental Science & Technology Letters, 2017, 4(3): 105-111.
|
[7] |
XIA C J, DIAMOND M L, PEASLEE G F, et al. Per- and polyfluoroalkyl substances in North American school uniforms[J]. Environmental Science & Technology, 2022, 56(19): 13845-13857.
|
[8] |
U S EPA. PFAS master list of PFAS substances (Version 2) [DB/OL]. (2021-08-10). [2023-03-09]
|
[9] |
LIU C, HATTON J, ARNOLD W A, et al. in situ sequestration of perfluoroalkyl substances using polymer-stabilized powdered activated carbon[J]. Environmental Science & Technology, 2020, 54(11): 6929-6936.
|
[10] |
LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts[J]. Environmental Pollution, 2020, 263: 114487. doi: 10.1016/j.envpol.2020.114487
|
[11] |
TIAN Y, YAO Y M, CHANG S A, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3): 1301-1310.
|
[12] |
WANG B, YAO Y M, WANG Y, et al. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology, 2022, 56(10): 6036-6045.
|
[13] |
CHEN Z H, YANG T Y, WALKER D I, et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults[J]. Environment International, 2020, 145: 106091. doi: 10.1016/j.envint.2020.106091
|
[14] |
DING N, HARLOW S, JOHN F RANDOLPH J Jr, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary[J]. Human Reproduction Update, 2020, 26: 724-752. doi: 10.1093/humupd/dmaa018
|
[15] |
BLAKE B E, PINNEY S M, HINES E P, et al. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort[J]. Environmental Pollution, 2018, 242: 894-904. doi: 10.1016/j.envpol.2018.07.042
|
[16] |
AMÉZQUETA S, SUBIRATS X, FUGUET E, et al. Octanol-water partition constant[M]//Liquid-Phase Extraction. Amsterdam: Elsevier, 2020: 183-208.
|
[17] |
LI M, LI J, LU Y C, et al. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Frontiers of Environmental Science & Engineering, 2020, 15(2): 1-8.
|
[18] |
COSTANZA J, ABRIOLA L M, PENNELL K D. Aqueous film-forming foams exhibit greater interfacial activity than PFOA, PFOS, or FOSA[J]. Environmental Science & Technology, 2020, 54(21): 13590-13597.
|
[19] |
KIM M, LI L Y, GRACE J R, et al. Selecting reliable physicochemical properties of perfluoroalkyl and polyfluoroalkyl substances (PFASs) based on molecular descriptors[J]. Environmental Pollution, 2015, 196: 462-472. doi: 10.1016/j.envpol.2014.11.008
|
[20] |
ENDO S, GOSS K U. Predicting partition coefficients of polyfluorinated and organosilicon compounds using polyparameter linear free energy relationships (PP-LFERs)[J]. Environmental Science & Technology, 2014, 48(5): 2776-2784.
|
[21] |
STEINMANN S N, SAUTET P, MICHEL C. Solvation free energies for periodic surfaces: Comparison of implicit and explicit solvation models[J]. Physical Chemistry Chemical Physics, 2016, 18(46): 31850-31861. doi: 10.1039/C6CP04094B
|
[22] |
NEDYALKOVA M A, MADURGA S, TOBISZEWSKI M, et al. Calculating the partition coefficients of organic solvents in octanol/water and octanol/air[J]. Journal of Chemical Information and Modeling, 2019, 59(5): 2257-2263. doi: 10.1021/acs.jcim.9b00212
|
[23] |
GUAN D, LUI R, MATTHEWS S. LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules[J]. Journal of Computer-Aided Molecular Design, 2020, 34(5): 511-522. doi: 10.1007/s10822-020-00278-1
|
[24] |
KUNDI V, HO J. Predicting octanol–water partition coefficients: Are quantum mechanical implicit solvent models better than empirical fragment-based methods?[J]. The Journal of Physical Chemistry B, 2019, 123(31): 6810-6822. doi: 10.1021/acs.jpcb.9b04061
|
[25] |
KLAMT A. The COSMO and COSMO-RS solvation models[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(1): e1338.
|
[26] |
MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. doi: 10.1021/jp810292n
|
[27] |
LI W R, SONG G B, ZHANG J, et al. Estimation of octanol-water partition coefficients of PCBs based on the solvation free energy[J]. Computational and Theoretical Chemistry, 2021, 1202: 113324. doi: 10.1016/j.comptc.2021.113324
|
[28] |
ITRC. Per- and polyfluoroalkyl substances technical and regulatory guidance [EB/OL]. [2023-04-09].
|
[29] |
DING G H, PEIJNENBURG W J G M. Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(6): 598-678. doi: 10.1080/10643389.2011.627016
|
[30] |
IWAI H, TSUDA N. Ecotox findings for ammonium perfluorohexanoate [EB/OL]. (2011-06-07). [2023-03-09]
|
[31] |
KELLY B C, IKONOMOU M G, BLAIR J D, et al. Perfluoroalkyl contaminants in an Arctic marine food web: Trophic magnification and wildlife exposure[J]. Environmental Science & Technology, 2009, 43(11): 4037-4043.
|
[32] |
JING P, RODGERS P J, AMEMIYA S. High lipophilicity of perfluoroalkyl carboxylate and sulfonate: Implications for their membrane permeability[J]. Journal of the American Chemical Society, 2009, 131(6): 2290-2296. doi: 10.1021/ja807961s
|
[33] |
WILLIAMS A J, GRULKE C M, EDWARDS J, et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry[J]. Journal of Cheminformatics, 2017, 9(1): 1-27. doi: 10.1186/s13321-016-0187-6
|
[34] |
CARMOSINI N, LEE L S. Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon[J]. Environmental Science & Technology, 2008, 42(17): 6559-6565.
|
[35] |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision D. 01 [CP]. Gaussian, Inc. , Wallingford CT, 2013.
|
[36] |
DENNINGTON R, KEITH T, MILLAM J. GaussView, Version 6 [CP]. Semichem Inc. , Shawnee Mission, KS, 2016.
|
[37] |
LEVINE I N. Quantum chemistry [M]. 3rd ed. New Jersey: Allyn and Bacon, Inc. , 1983: 11-20.
|
[38] |
STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. doi: 10.1021/j100096a001
|
[39] |
ZHAO Y, SCHULTZ N E, TRUHLAR D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Theory and Computation, 2006, 2(2): 364-382. doi: 10.1021/ct0502763
|
[40] |
ZHAO Y, TRUHLAR D. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167. doi: 10.1021/ar700111a
|
[41] |
PETERSSON G A, BENNETT A, TENSFELDT T G, et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193-2218. doi: 10.1063/1.455064
|
[42] |
PETERSSON G A, AL-LAHAM M A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090. doi: 10.1063/1.460447
|
[43] |
CLARK T, CHANDRASEKHAR J, SPITZNAGEL G W, et al. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F[J]. Journal of Computational Chemistry, 1983, 4(3): 294-301. doi: 10.1002/jcc.540040303
|
[44] |
KENDALL R A, DUNNING T H Jr, HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. The Journal of Chemical Physics, 1992, 96(9): 6796-6806. doi: 10.1063/1.462569
|
[45] |
EASTON R E, GIESEN D J, WELCH A, et al. The MIDI!basis set for quantum mechanical calculations of molecular geometries and partial charges[J]. Theoretica Chimica Acta, 1996, 93(5): 281-301. doi: 10.1007/BF01127507
|
[46] |
HO J, KLAMT A, COOTE M L. Comment on the correct use of continuum solvent models[J]. The Journal of Physical Chemistry A, 2010, 114(51): 13442-13444. doi: 10.1021/jp107136j
|
[47] |
TIRADO-RIVES J, JORGENSEN W L. Performance of B3LYP density functional methods for a large set of organic molecules[J]. Journal of Chemical Theory and Computation, 2008, 4(2): 297-306. doi: 10.1021/ct700248k
|
[48] |
HOHENSTEIN E G, CHILL S T, SHERRILL C D. Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules[J]. Journal of Chemical Theory and Computation, 2008, 4(12): 1996-2000. doi: 10.1021/ct800308k
|
[49] |
TENTSCHER P R, AREY J S. Geometries and vibrational frequencies of small radicals: Performance of coupled cluster and more approximate methods[J]. Journal of Chemical Theory and Computation, 2012, 8(6): 2165-2179. doi: 10.1021/ct300194x
|
[50] |
KRAFFT M P, RIESS J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one[J]. Chemosphere, 2015, 129: 4-19. doi: 10.1016/j.chemosphere.2014.08.039
|
[51] |
LI W R, DING G H, GAO H, et al. Prediction of octanol-air partition coefficients for PCBs at different ambient temperatures based on the solvation free energy and the dimer ratio[J]. Chemosphere, 2020, 242: 125246. doi: 10.1016/j.chemosphere.2019.125246
|
[52] |
HWANG J, DIAL B E, LI P, et al. How important are dispersion interactions to the strength of aromatic stacking interactions in solution?[J]. Chemical Science, 2015, 6(7): 4358-4364. doi: 10.1039/C5SC01370D
|
[53] |
BHHATARAI B, GRAMATICA P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals[J]. Environmental Science & Technology, 2011, 45(19): 8120-8128.
|
[54] |
LAMPIC A, PARNIS J M. Property estimation of per- and polyfluoroalkyl substances: A comparative assessment of estimation methods[J]. Environmental Toxicology and Chemistry, 2020, 39(4): 775-786. doi: 10.1002/etc.4681
|
[55] |
ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23): 7298-7304.
|