[1] LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. New York: Routledge, 2015.
[2] 李经涵, 张建强, 夏丽琼, 等. 生物炭影响抗生素在土壤中环境行为的Meta分析[J]. 环境科学, 2023, 44(1): 531—539. LI J H, ZHANG J Q, XIA L Q, et al. Effects of biochar on antibiotic environmental behaviors in soil: A meta-analysis[J]. Environmental Science, 2023, 44(1): 531-539 (in Chinese).
[3] BUSS W, HILBER I, GRAHAM M C, et al. Composition of PAHs in biochar and implications for biochar production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(20): 10.
[4] ISLAM T, LI Y L, CHENG H F. Biochars and engineered biochars for water and soil remediation: A review[J]. Sustainability, 2021, 13(17): 9932. doi: 10.3390/su13179932
[5] TAN X, ZHU S, SHOW P L, et al. Sorption of ionized dyes on high-salinity microalgal residue derived biochar: Electron acceptor-donor and metal-organic bridging mechanisms[J]. Journal of Hazardous Materials, 2020, 393: 122435. doi: 10.1016/j.jhazmat.2020.122435
[6] WANG Q, WEN J, YANG L S, et al. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar[J]. Environmental Science and Pollution Research, 2023, 30(13): 39154-39168. doi: 10.1007/s11356-022-24952-z
[7] 吴丹萍, 陈全, 李东梅, 等. 生物炭含氧官能团的生成溯源及其在污染物吸附-降解过程中的作用[J]. 环境化学, 2021, 40(10): 3190—3198. doi: 10.7524/j.issn.0254-6108.2020062301 WU D P, CHEN Q, LI D M, et al. Traceability of oxygen-containing functional groups in biochars and their roles in the adsorption-degradation of contaminants[J]. Environmental Chemistry, 2021, 40(10): 3190-3198 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020062301
[8] FENG S H, ZHANG P, DUAN W Y, et al. P-nitrophenol degradation by pine-wood derived biochar: The role of redox-active moieties and pore structures[J]. Science of the Total Environment, 2020, 741: 140431. doi: 10.1016/j.scitotenv.2020.140431
[9] LYU H H, ZHANG Q R, SHEN B X. Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240: 124842. doi: 10.1016/j.chemosphere.2019.124842
[10] ZHANG J L, JIN X, YANG C H. Efficient removal of organic pollutants in waste sulfuric acid by an advanced oxidation process using coconut shell-derived biochar to produce qualified poly aluminium sulfate[J]. Separation and Purification Technology, 2022, 293: 121057. doi: 10.1016/j.seppur.2022.121057
[11] GONG H, CHU W, XU K H, et al. Efficient degradation, mineralization and toxicity reduction of sulfamethoxazole under photo-activation of peroxymonosulfate by ferrate (Ⅵ)[J]. Chemical Engineering Journal, 2020, 389: 124084. doi: 10.1016/j.cej.2020.124084
[12] ZHANG C W, LI T Y, ZHANG J Y, et al. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals[J]. Applied Catalysis B: Environmental, 2019, 259: 118030. doi: 10.1016/j.apcatb.2019.118030
[13] GLIGOROVSKI S, STREKOWSKI R, BARBATI S, et al. Environmental implications of hydroxyl radicals (·OH)[J]. Chemical Reviews, 2015, 115(24): 13051-13092. doi: 10.1021/cr500310b
[14] FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176: 210-217. doi: 10.1016/j.biortech.2014.11.032
[15] LI J, LI Q Q, STEINBERG C E W, et al. Reaction of substituted phenols with lignin char: Dual oxidative and reductive pathways depending on substituents and conditions[J]. Environmental Science & Technology, 2020, 54(24): 15811-15820.
[16] 曾亮. 生物炭氧化还原性质及其介导外源Fe(Ⅲ)降解2, 4-二氯苯酚的作用机制[D]. 昆明: 昆明理工大学, 2021. ZENG L. Redox properties of biochar and its mechanism of mediating the degradation of 2, 4- dichlorophenol by exogenous Fe(Ⅲ)[D]. Kunming: Kunming University of Science and Technology, 2021(in Chinese).
[17] 田发荣, 高佳丽, 朱周彩霞, 等. 利用生物炭技术处理酸性矿山废水的研究进展[J]. 环境化学, 2022, 41(8): 2712—2728. doi: 10.7524/j.issn.0254-6108.2021042004 TIAN F R, GAO J L, ZHU Z, et al. Progress on treatment of acid mine drainage by biochar technology[J]. Environmental Chemistry, 2022, 41(8): 2712-2728 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021042004
[18] REY A, ZAZO J A, CASAS J A, et al. Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide[J]. Applied Catalysis A General, 2011, 402(1-2): 146-155. doi: 10.1016/j.apcata.2011.05.040
[19] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19): 8559-8566.
[20] TU Y T, PENG Z P, HUANG J C, et al. Preparation and characterization of magnetic biochar nanocomposites via a modified solvothermal method and their use as efficient heterogeneous Fenton-like catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 1809-1821.
[21] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9): 5645-5653.
[22] YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: Role of persistent free radicals[J]. Environmental Science & Technology, 2016, 50(2): 694-700.
[23] 杨海君, 邓蓉蓉, 易勇, 等. 加拿大一枝黄花茎秆生物炭的制备及其对吡啶的吸附[J]. 环境化学, 2021, 40(6): 1922—1932. doi: 10.7524/j.issn.0254-6108.2020012701 YANG H J, DENG R R, YI Y, et al. Preparation of biochar from Solidago canadensis l. stalk and its pyridine adsorption performance[J]. Environmental Chemistry, 2021, 40(6): 1922-1932 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020012701
[24] ZHANG P, ZHANG P J, FENG S H, et al. The mechanism of p-nitrophenol degradation by dissolved organic matter derived from biochar[J]. The Science of the Total Environment, 2023, 868: 161693. doi: 10.1016/j.scitotenv.2023.161693
[25] BENBI D K, BRAR K. Pyrogenic conversion of rice straw and wood to biochar increases aromaticity and carbon accumulation in soil[J]. Carbon Management, 2021: 1-13.
[26] 许天星, 高甫威, 于梦梦, 等. 花生壳生物炭降解对硝基苯酚的机制探究[J]. 昆明理工大学学报(自然科学版), 2022, 47(1): 118—127. doi: 10.16112/j.cnki.53-1223/n.2022.01.162 XU T X, GAO F W, YU M M, et al. Mechanism of degradation of P-nitrophenol by peanut shell biochar[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2022, 47(1): 118-127 (in Chinese). doi: 10.16112/j.cnki.53-1223/n.2022.01.162
[27] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学, 2020, 39(8): 2196—2205. doi: 10.7524/j.issn.0254-6108.2019052001 SONG Z F, SHI X Q, LIU Z, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisphenol A (BPA)[J]. Environmental Chemistry, 2020, 39(8): 2196-2205 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019052001
[28] LI Y Y, PAN Y H, LIAN L S, et al. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen[J]. Water Research, 2017, 109: 266-273. doi: 10.1016/j.watres.2016.11.049
[29] 段浩楠, 吕宏虹, 王夫美, 等. 生物炭/铁复合材料的制备及其在环境修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 774—790. doi: 10.7524/j.issn.0254-6108.2019103109 DUAN H N, LV H H, WANG F M, et al. Preparation of biochar/iron composite and its application in environmental remediation[J]. Environmental Chemistry, 2020, 39(3): 774-790 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019103109
[30] RODRÍGUEZ-VILA A, ASENSIO V, FORJÁN R, et al. Chemical fractionation of Cu, Ni, Pb and Zn in a mine soil amended with compost and biochar and vegetated with Brassica juncea L[J]. Journal of Geochemical Exploration, 2015, 158: 74-81. doi: 10.1016/j.gexplo.2015.07.005
[31] 李淑妮, 崔斌, 唐宗薰. 元素电势图及其应用[J]. 宝鸡文理学院学报(自然科学版), 2001, 21(1): 6. LI S N, CUI B, TANG Z X. Potential diagram of elements and its application[J]. Journal of Baoji College of Arts and Sciences (Natural Science Edition), 2001, 21(1): 6(in Chinese).
[32] TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. doi: 10.1016/j.chemosphere.2014.12.058
[33] CHEN Q, MA C R, DUAN W Y, et al. Coupling adsorption and degradation in p-nitrophenol removal by biochars[J]. Journal of Cleaner Production, 2020, 271: 122550. doi: 10.1016/j.jclepro.2020.122550
[34] LI M H, GUO X L, WEI Y, et al. Adsorption mechanism and structure-performance relationship of chromium ions by biochar[J]. Water, Air, & Soil Pollution, 2020, 231: 1-12.
[35] HU Y, CHEN D Z, ZHANG R, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials, 2021, 419: 126495. doi: 10.1016/j.jhazmat.2021.126495
[36] WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059
[37] ZHU F, WU Y Y, LIANG Y K, et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal, 2020, 389: 124276. doi: 10.1016/j.cej.2020.124276
[38] FRANZ M, ARAFAT H A, PINTO N G. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon[J]. Carbon, 2000, 38(13): 1807-1819. doi: 10.1016/S0008-6223(00)00012-9
[39] LI L, QUINLIVAN P A, KNAPPE D R U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon, 2002, 40(12): 2085-2100. doi: 10.1016/S0008-6223(02)00069-6
[40] PENDLETON P, WONG S H, SCHUMANN R, et al. Properties of activated carbon controlling 2-Methylisoborneol adsorption[J]. Carbon, 1997, 35(8): 1141-1149. doi: 10.1016/S0008-6223(97)00086-9
[41] YU L P, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5: 16221. doi: 10.1038/srep16221
[42] KEMPER J M, AMMAR E, MITCH W A. Abiotic degradation of hexahydro-l, 3, 5-trinitro-1, 3, 5-triazine in the presence of hydrogen sulfide and black carbon[J]. Environmental Science & Technology, 2008, 42(6): 2118-2123.
[43] ZEE F P V D, BISSCHOPS I A E, LETTINGA G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes[J]. Environmental Science & Technology, 2003, 37(2): 402-408.
[44] PHAM A N, WAITE T D. Oxygenation of Fe(Ⅱ) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3616-3630. doi: 10.1016/j.gca.2008.05.032
[45] JONES A D, SHRINIVAS A, BEZNER-KERR R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data[J]. Food Policy, 2014, 46: 1-12. doi: 10.1016/j.foodpol.2014.02.001