[1] ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Estimating community drug abuse by wastewater analysis[J]. Environmental Health Perspectives, 2008, 116(8): 1027-1032. doi: 10.1289/ehp.11022
[2] GRACIA-LOR E, ZUCCATO E, CASTIGLIONI S. Refining correction factors for back-calculation of illicit drug use[J]. Science of the Total Environment, 2016, 573: 1648-1659. doi: 10.1016/j.scitotenv.2016.09.179
[3] CASTIGLIONI S, BIJLSMA L, COVACI A, et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers[J]. Environmental Science & Technology, 2013, 47(3): 1452-1460.
[4] GONZÁLEZ-MARIÑO I, BAZ-LOMBA J A, ALYGIZAKIS N A, et al. Spatio-temporal assessment of illicit drug use at large scale: Evidence from 7 years of international wastewater monitoring[J]. Addiction (Abingdon, England), 2020, 115(1): 109-120. doi: 10.1111/add.14767
[5] ZHENG Q D, REN Y, WANG Z, et al. Assessing patterns of illicit drug use in a Chinese city by analyzing daily wastewater samples over a one-year period[J]. Journal of Hazardous Materials, 2021, 417: 125999. doi: 10.1016/j.jhazmat.2021.125999
[6] REINSTADLER V, AUSWEGER V, GRABHER A L, et al. Monitoring drug consumption in Innsbruck during coronavirus disease 2019 (COVID-19) lockdown by wastewater analysis[J]. The Science of the Total Environment, 2021, 757: 144006. doi: 10.1016/j.scitotenv.2020.144006
[7] HUIZER M, TER LAAK T L, de VOOGT P, et al. Wastewater-based epidemiology for illicit drugs: A critical review on global data[J]. Water Research, 2021, 207: 117789. doi: 10.1016/j.watres.2021.117789
[8] CAMPOS E, de MARTINIS E, de MARTINIS B. Forensic analysis of illicit drugs and novel psychoactive substances in wastewater: A review of toxicological, chemical and microbiological aspects[J]. Brazilian Journal of Analytical Chemistry, 2022: 9 (34): 15-34.
[9] ZAREI S, SALIMI Y, REPO E, et al. A global systematic review and meta-analysis on illicit drug consumption rate through wastewater-based epidemiology[J]. Environmental Science and Pollution Research, 2020, 27(29): 36037-36051. doi: 10.1007/s11356-020-09818-6
[10] DU P, ZHENG Q D, THOMAS K V, et al. A revised excretion factor for estimating ketamine consumption by wastewater-based epidemiology–Utilising wastewater and seizure data[J]. Environment International, 2020, 138: 105645. doi: 10.1016/j.envint.2020.105645
[11] BRUNO R, EDIRISINGHE M, HALL W, et al. Association between purity of drug seizures and illicit drug loads measured in wastewater in a South East Queensland Catchment over a six year period[J]. Science of the Total Environment, 2018, 635: 779-783. doi: 10.1016/j.scitotenv.2018.04.192
[12] BIJLSMA L, PICÓ Y, ANDREU V, et al. The embodiment of wastewater data for the estimation of illicit drug consumption in Spain[J]. Science of the Total Environment, 2021, 772: 144794. doi: 10.1016/j.scitotenv.2020.144794
[13] PEI W, ZHAN Q X, YAN Z Y, et al. Using Monte Carlo simulation to assess uncertainty and variability of methamphetamine use and prevalence from wastewater analysis[J]. International Journal of Drug Policy, 2016, 36: 1-7. doi: 10.1016/j.drugpo.2016.06.013
[14] TARA C, RHIANNON H, MANOJ P, et al. Uncertainties treatment for wastewater-based epidemiological estimation of the consumption of illicit and prescribed neuropsychiatric drugs in two urban communities in Kentucky using ammonium normalized population and Monte Carlo simulation[J]. Abstracts of Papers of the American Chemical Society, 2019, 258: 1-1.
[15] CASTIGLIONI S, THOMAS K V, KASPRZYK-HORDERN B, et al. Testing wastewater to detect illicit drugs: State of the art, potential and research needs[J]. Science of the Total Environment, 2014, 487: 613-620. doi: 10.1016/j.scitotenv.2013.10.034
[16] ORT C, LAWRENCE M G, RIECKERMANN J, et al. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: Are your conclusions valid?A critical review[J]. Environmental Science & Technology, 2010, 44(16): 6024-6035.
[17] ORT C, LAWRENCE M G, REUNGOAT J, et al. Sampling for PPCPs in wastewater systems: Comparison of different sampling modes and optimization strategies[J]. Environmental Science & Technology, 2010, 44(16): 6289-6296.
[18] HAHN R Z, AUGUSTO DO NASCIMENTO C, LINDEN R. Evaluation of illicit drug consumption by wastewater analysis using polar organic chemical integrative sampler as a monitoring tool[J]. Frontiers in Chemistry, 2021, 9: 596875. doi: 10.3389/fchem.2021.596875
[19] BAZ-LOMBA J A, HARMAN C, REID M, et al. Passive sampling of wastewater as a tool for the long-term monitoring of community exposure: Illicit and prescription drug trends as a proof of concept[J]. Water Research, 2017, 121: 221-230. doi: 10.1016/j.watres.2017.05.041
[20] KHAN U, NICELL J A. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol[J]. Science of the Total Environment, 2012, 421/422: 144-162. doi: 10.1016/j.scitotenv.2012.01.020
[21] KHAN U, NICELL J A. Refined sewer epidemiology mass balances and their application to heroin, cocaine and ecstasy[J]. Environment International, 2011, 37(7): 1236-1252. doi: 10.1016/j.envint.2011.05.009
[22] CASTIGLIONI S, BAGNATI R, MELIS M, et al. Identification of cocaine and its metabolites in urban wastewater and comparison with the human excretion profile in urine[J]. Water Research, 2011, 45(16): 5141-5150. doi: 10.1016/j.watres.2011.07.017
[23] DEVAULT D A, MAGUET H, MERLE S, et al. Wastewater-based epidemiology in low Human Development Index states: Bias in consumption monitoring of illicit drugs[J]. Environmental Science and Pollution Research, 2018, 25(28): 27819-27838. doi: 10.1007/s11356-018-2864-7
[24] BADE R, GHETIA M, CHAPPELL A, et al. Pholedrine is a marker of direct disposal of methamphetamine[J]. Science of the Total Environment, 2021, 782: 146839. doi: 10.1016/j.scitotenv.2021.146839
[25] HERNÁNDEZ F, CASTIGLIONI S, COVACI A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater[J]. Mass Spectrometry Reviews, 2018, 37(3): 258-280. doi: 10.1002/mas.21525
[26] McCALL A K, BADE R, KINYUA J, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples[J]. Water Research, 2016, 88: 933-947. doi: 10.1016/j.watres.2015.10.040
[27] LI J Y, GAO J F, THAI P K, et al. Experimental investigation and modeling of the transformation of illicit drugs in a pilot-scale sewer system[J]. Environmental Science & Technology, 2019, 53(8): 4556-4565.
[28] BAZ-LOMBA J A, Di RUSCIO F, AMADOR A, et al. Assessing alternative population size proxies in a wastewater catchment area using mobile device data[J]. Environmental Science & Technology, 2019, 53(4): 1994-2001.
[29] YU H, SHAO X T, LIU S Y, et al. Estimating dynamic population served by wastewater treatment plants using location-based services data[J]. Environmental Geochemistry and Health, 2021, 43(11): 4627-4635. doi: 10.1007/s10653-021-00954-7
[30] ZHENG Q D, WANG Z, LIU C Y, et al. Applying a population model based on hydrochemical parameters in wastewater-based epidemiology[J]. Science of the Total Environment, 2019, 657: 466-475. doi: 10.1016/j.scitotenv.2018.11.426
[31] DEVILLE P, LINARD C, MARTIN S, et al. Dynamic population mapping using mobile phone data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 15888-15893.
[32] RICO M, ANDRÉS-COSTA M J, PICÓ Y. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study[J]. Journal of Hazardous Materials, 2017, 323: 156-165. doi: 10.1016/j.jhazmat.2016.05.079
[33] SENTA I, GRACIA-LOR E, BORSOTTI A, et al. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment[J]. Water Research, 2015, 74: 23-33. doi: 10.1016/j.watres.2015.02.002
[34] CHIAIA A C, BANTA-GREEN C, FIELD J. Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in U. S. wastewaters[J]. Environmental Science & Technology, 2008, 42(23): 8841-8848.
[35] DAUGHTON C G. Real-time estimation of small-area populations with human biomarkers in sewage[J]. Science of the Total Environment, 2012, 414: 6-21. doi: 10.1016/j.scitotenv.2011.11.015
[36] THAI P K, O'BRIEN J W, BANKS A P W, et al. Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology[J]. Science of the Total Environment, 2019, 671: 248-253. doi: 10.1016/j.scitotenv.2019.03.231
[37] HOU C Z, CHU T T, CHEN M Y, et al. Application of multi-parameter population model based on endogenous population biomarkers and flow volume in wastewater epidemiology[J]. Science of the Total Environment, 2021, 759: 143480. doi: 10.1016/j.scitotenv.2020.143480
[38] GAO J F, ZHENG Q D, LAI F Y, et al. Using wastewater-based epidemiology to estimate consumption of alcohol and nicotine in major cities of China in 2014 and 2016[J]. Environment International, 2020, 136: 105492. doi: 10.1016/j.envint.2020.105492
[39] O'BRIEN J W, BANKS A P W, NOVIC A J, et al. Impact of in-sewer degradation of pharmaceutical and personal care products (PPCPs) population markers on a population model[J]. Environmental Science & Technology, 2017, 51(7): 3816-3823.
[40] THAI P K, O’BRIEN J W, TSCHARKE B J, et al. Analyzing wastewater samples collected during census to determine the correction factors of drugs for wastewater-based epidemiology: The case of codeine and methadone[J]. Environmental Science & Technology Letters, 2019, 6(5): 265-269.
[41] O'BRIEN J W, THAI P K, EAGLESHAM G, et al. A model to estimate the population contributing to the wastewater using samples collected on census day[J]. Environmental Science & Technology, 2014, 48(1): 517-525.
[42] BRUNETTI P, LO FARO A F, Di TRANA A, et al. β’-phenylfentanyl metabolism in primary human hepatocyte incubations: Identification of potential biomarkers of exposure in clinical and forensic toxicology[J]. Journal of Analytical Toxicology, 2023, 46(9): e207-e217. doi: 10.1093/jat/bkac065
[43] LEE K Z H, WANG Z T, FONG C Y, et al. Identification of optimal urinary biomarkers of synthetic cannabinoids BZO-HEXOXIZID, BZO-POXIZID, 5F-BZO-POXIZID, and BZO-CHMOXIZID for illicit abuse monitoring[J]. Clinical Chemistry, 2022, 68(11): 1436-1448. doi: 10.1093/clinchem/hvac138
[44] PIECHOTA P, CRONIN M T D, HEWITT M, et al. Pragmatic approaches to using computational methods to predict xenobiotic metabolism[J]. Journal of Chemical Information and Modeling, 2013, 53(6): 1282-1293. doi: 10.1021/ci400050v
[45] ANDRÉS-COSTA M J, ANDREU V, PICÓ Y. Liquid chromatography–mass spectrometry as a tool for wastewater-based epidemiology: Assessing new psychoactive substances and other human biomarkers[J]. TrAC Trends in Analytical Chemistry, 2017, 94: 21-38. doi: 10.1016/j.trac.2017.06.012
[46] CASTRIGNANÒ E, YANG Z G, BADE R, et al. Enantiomeric profiling of chiral illicit drugs in a pan-European study[J]. Water Research, 2018, 130: 151-160. doi: 10.1016/j.watres.2017.11.051
[47] GAO J F, XU Z Q, LI X Q, et al. Enantiomeric profiling of amphetamine and methamphetamine in wastewater: A 7-year study in regional and urban Queensland, Australia[J]. Science of the Total Environment, 2018, 643: 827-834. doi: 10.1016/j.scitotenv.2018.06.242