-
自2001年Daughton提出“污水分析”的概念后,美国首次研究了污水中苯丙胺的含量,ZUCCATO等将其应用并发展成“污水流行病学”,用以估算人口中可卡因的消费量,并迅速被拓展到其他非法药物的滥用监测中[1,2]. 2010年,欧洲污水分析核心小组(SCORE)成立,旨在建立污水分析和协调研究的标准化方法[3]. 近年来,污水流行病学已经在世界范围内得到广泛应用,并证明了其在量化不同时间和空间范围内毒品滥用中的巨大潜力. 相较于其他方法,该方法具有明显优势:非侵入式、接近实时监测,且不受反应偏差影响,既可以研究长期[4]、短期或特殊日期、事件期间特定地区的毒品滥用变动[5 − 6],也可以比较不同地区的毒情严重程度[7],还可以对新精神活性物质进行监测[8]. 但该方法也存在一定局限性,如无法准确提供使用频率、吸食途径、主要使用者和药物纯度等信息[9 − 11]. 同时,分析结果与污水采样、生物标志物选择、分析过程可靠性、校正因子以及人口规模估算等参数具有很大关系,可能造成较大的不确定性[12 − 14].
因此迫切需要通过分析每一步的不确定度来源,通过研究改进提高结果的准确度. 鉴于甲基苯丙胺(methamphetamine, MAMP)是国内滥用程度最严重,同时研究最为广泛的毒品,本文以近3年污水流行病学关于MAMP的研究为切入点(在web of science上以主题为“methamphetamine”和“wastewater-based epidemiology or sewage-based epidemiology”,发表日期为“2019年以来”进行检索,经排查研究内容有效文献为80篇),系统梳理本领域最新研究进展和当前存在的主要问题,为进一步完善技术方法提供有益参考.
污水流行病学在毒情监测中的不确定性-以甲基苯丙胺为例
Uncertainties of illicit drugs consumption estimated by wastewater-based epidemiology: The case of methamphetamine
-
摘要: 污水流行病学在毒情监测评估中发挥的作用日趋显著,但在实战应用中仍存在一些亟待研究解决的问题,突出体现为监测结果的不确定性. 本文首次以国内滥用最为严重的甲基苯丙胺为切入点,结合近年来文献中有关参数的采用情况,对采样、仪器分析和计算过程中可能引起毒情评估偏差的因素进行全面比对分析. 同时,指出今后研究的重点方向,以期进一步提高基于污水流行病学的毒情监测工作的标准化和精准度,为相关研究工作提供参考.Abstract: Wastewater-based epidemiology (WBE) plays a vital role in monitoring the pattern of consumption of illicit drugs in a general population. However, it also brings several uncertainties about the results. For the first time, the paper investigates the potential and reliability of WBE methodologies from methamphetamine, the most abused drug in China, by critically looking at the literature published in the last three years. The uncertainties related to sampling methodology, analytical procedure, and consumption calculation are analyzed in detail, and suggestions to further promote WBE studies and universal analysis criteria for valid comparisons are provided.
-
Key words:
- wastewater analysis /
- methamphetamine /
- uncertainty /
- anti-drugs.
-
图 5 污水中甲基苯丙胺在不同条件下的稳定性研究
Figure 5. Stability of methamphetamine in unfiltered wastewater with no preservation(A), acid preservation (B) and sodium metabisulfite as a preservative (C) [24](Dotted line indicates the 20% threshold)
表 1 SCORE制定的最佳实践要求
Table 1. Best practice protocol adopted by SCORE
指标
Index要求
Requirements采样点 污水处理厂进水口 样品类型 24 h 流量等比例后混合 样品容器 PET或玻璃 其他信息 污水厂类型、采样模式、采样位置、流量、BOD、COD、TN、TP、温度、pH 采样条件 <4 ℃ 存储条件 立即冷冻或12 h内分析 内部控制 同位素内标 外部控制 实验室能力验证 -
[1] ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Estimating community drug abuse by wastewater analysis[J]. Environmental Health Perspectives, 2008, 116(8): 1027-1032. doi: 10.1289/ehp.11022 [2] GRACIA-LOR E, ZUCCATO E, CASTIGLIONI S. Refining correction factors for back-calculation of illicit drug use[J]. Science of the Total Environment, 2016, 573: 1648-1659. doi: 10.1016/j.scitotenv.2016.09.179 [3] CASTIGLIONI S, BIJLSMA L, COVACI A, et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers[J]. Environmental Science & Technology, 2013, 47(3): 1452-1460. [4] GONZÁLEZ-MARIÑO I, BAZ-LOMBA J A, ALYGIZAKIS N A, et al. Spatio-temporal assessment of illicit drug use at large scale: Evidence from 7 years of international wastewater monitoring[J]. Addiction (Abingdon, England), 2020, 115(1): 109-120. doi: 10.1111/add.14767 [5] ZHENG Q D, REN Y, WANG Z, et al. Assessing patterns of illicit drug use in a Chinese city by analyzing daily wastewater samples over a one-year period[J]. Journal of Hazardous Materials, 2021, 417: 125999. doi: 10.1016/j.jhazmat.2021.125999 [6] REINSTADLER V, AUSWEGER V, GRABHER A L, et al. Monitoring drug consumption in Innsbruck during coronavirus disease 2019 (COVID-19) lockdown by wastewater analysis[J]. The Science of the Total Environment, 2021, 757: 144006. doi: 10.1016/j.scitotenv.2020.144006 [7] HUIZER M, TER LAAK T L, de VOOGT P, et al. Wastewater-based epidemiology for illicit drugs: A critical review on global data[J]. Water Research, 2021, 207: 117789. doi: 10.1016/j.watres.2021.117789 [8] CAMPOS E, de MARTINIS E, de MARTINIS B. Forensic analysis of illicit drugs and novel psychoactive substances in wastewater: A review of toxicological, chemical and microbiological aspects[J]. Brazilian Journal of Analytical Chemistry, 2022: 9 (34): 15-34. [9] ZAREI S, SALIMI Y, REPO E, et al. A global systematic review and meta-analysis on illicit drug consumption rate through wastewater-based epidemiology[J]. Environmental Science and Pollution Research, 2020, 27(29): 36037-36051. doi: 10.1007/s11356-020-09818-6 [10] DU P, ZHENG Q D, THOMAS K V, et al. A revised excretion factor for estimating ketamine consumption by wastewater-based epidemiology–Utilising wastewater and seizure data[J]. Environment International, 2020, 138: 105645. doi: 10.1016/j.envint.2020.105645 [11] BRUNO R, EDIRISINGHE M, HALL W, et al. Association between purity of drug seizures and illicit drug loads measured in wastewater in a South East Queensland Catchment over a six year period[J]. Science of the Total Environment, 2018, 635: 779-783. doi: 10.1016/j.scitotenv.2018.04.192 [12] BIJLSMA L, PICÓ Y, ANDREU V, et al. The embodiment of wastewater data for the estimation of illicit drug consumption in Spain[J]. Science of the Total Environment, 2021, 772: 144794. doi: 10.1016/j.scitotenv.2020.144794 [13] PEI W, ZHAN Q X, YAN Z Y, et al. Using Monte Carlo simulation to assess uncertainty and variability of methamphetamine use and prevalence from wastewater analysis[J]. International Journal of Drug Policy, 2016, 36: 1-7. doi: 10.1016/j.drugpo.2016.06.013 [14] TARA C, RHIANNON H, MANOJ P, et al. Uncertainties treatment for wastewater-based epidemiological estimation of the consumption of illicit and prescribed neuropsychiatric drugs in two urban communities in Kentucky using ammonium normalized population and Monte Carlo simulation[J]. Abstracts of Papers of the American Chemical Society, 2019, 258: 1-1. [15] CASTIGLIONI S, THOMAS K V, KASPRZYK-HORDERN B, et al. Testing wastewater to detect illicit drugs: State of the art, potential and research needs[J]. Science of the Total Environment, 2014, 487: 613-620. doi: 10.1016/j.scitotenv.2013.10.034 [16] ORT C, LAWRENCE M G, RIECKERMANN J, et al. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: Are your conclusions valid?A critical review[J]. Environmental Science & Technology, 2010, 44(16): 6024-6035. [17] ORT C, LAWRENCE M G, REUNGOAT J, et al. Sampling for PPCPs in wastewater systems: Comparison of different sampling modes and optimization strategies[J]. Environmental Science & Technology, 2010, 44(16): 6289-6296. [18] HAHN R Z, AUGUSTO DO NASCIMENTO C, LINDEN R. Evaluation of illicit drug consumption by wastewater analysis using polar organic chemical integrative sampler as a monitoring tool[J]. Frontiers in Chemistry, 2021, 9: 596875. doi: 10.3389/fchem.2021.596875 [19] BAZ-LOMBA J A, HARMAN C, REID M, et al. Passive sampling of wastewater as a tool for the long-term monitoring of community exposure: Illicit and prescription drug trends as a proof of concept[J]. Water Research, 2017, 121: 221-230. doi: 10.1016/j.watres.2017.05.041 [20] KHAN U, NICELL J A. Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol[J]. Science of the Total Environment, 2012, 421/422: 144-162. doi: 10.1016/j.scitotenv.2012.01.020 [21] KHAN U, NICELL J A. Refined sewer epidemiology mass balances and their application to heroin, cocaine and ecstasy[J]. Environment International, 2011, 37(7): 1236-1252. doi: 10.1016/j.envint.2011.05.009 [22] CASTIGLIONI S, BAGNATI R, MELIS M, et al. Identification of cocaine and its metabolites in urban wastewater and comparison with the human excretion profile in urine[J]. Water Research, 2011, 45(16): 5141-5150. doi: 10.1016/j.watres.2011.07.017 [23] DEVAULT D A, MAGUET H, MERLE S, et al. Wastewater-based epidemiology in low Human Development Index states: Bias in consumption monitoring of illicit drugs[J]. Environmental Science and Pollution Research, 2018, 25(28): 27819-27838. doi: 10.1007/s11356-018-2864-7 [24] BADE R, GHETIA M, CHAPPELL A, et al. Pholedrine is a marker of direct disposal of methamphetamine[J]. Science of the Total Environment, 2021, 782: 146839. doi: 10.1016/j.scitotenv.2021.146839 [25] HERNÁNDEZ F, CASTIGLIONI S, COVACI A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater[J]. Mass Spectrometry Reviews, 2018, 37(3): 258-280. doi: 10.1002/mas.21525 [26] McCALL A K, BADE R, KINYUA J, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples[J]. Water Research, 2016, 88: 933-947. doi: 10.1016/j.watres.2015.10.040 [27] LI J Y, GAO J F, THAI P K, et al. Experimental investigation and modeling of the transformation of illicit drugs in a pilot-scale sewer system[J]. Environmental Science & Technology, 2019, 53(8): 4556-4565. [28] BAZ-LOMBA J A, Di RUSCIO F, AMADOR A, et al. Assessing alternative population size proxies in a wastewater catchment area using mobile device data[J]. Environmental Science & Technology, 2019, 53(4): 1994-2001. [29] YU H, SHAO X T, LIU S Y, et al. Estimating dynamic population served by wastewater treatment plants using location-based services data[J]. Environmental Geochemistry and Health, 2021, 43(11): 4627-4635. doi: 10.1007/s10653-021-00954-7 [30] ZHENG Q D, WANG Z, LIU C Y, et al. Applying a population model based on hydrochemical parameters in wastewater-based epidemiology[J]. Science of the Total Environment, 2019, 657: 466-475. doi: 10.1016/j.scitotenv.2018.11.426 [31] DEVILLE P, LINARD C, MARTIN S, et al. Dynamic population mapping using mobile phone data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 15888-15893. [32] RICO M, ANDRÉS-COSTA M J, PICÓ Y. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study[J]. Journal of Hazardous Materials, 2017, 323: 156-165. doi: 10.1016/j.jhazmat.2016.05.079 [33] SENTA I, GRACIA-LOR E, BORSOTTI A, et al. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment[J]. Water Research, 2015, 74: 23-33. doi: 10.1016/j.watres.2015.02.002 [34] CHIAIA A C, BANTA-GREEN C, FIELD J. Eliminating solid phase extraction with large-volume injection LC/MS/MS: Analysis of illicit and legal drugs and human urine indicators in U. S. wastewaters[J]. Environmental Science & Technology, 2008, 42(23): 8841-8848. [35] DAUGHTON C G. Real-time estimation of small-area populations with human biomarkers in sewage[J]. Science of the Total Environment, 2012, 414: 6-21. doi: 10.1016/j.scitotenv.2011.11.015 [36] THAI P K, O'BRIEN J W, BANKS A P W, et al. Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology[J]. Science of the Total Environment, 2019, 671: 248-253. doi: 10.1016/j.scitotenv.2019.03.231 [37] HOU C Z, CHU T T, CHEN M Y, et al. Application of multi-parameter population model based on endogenous population biomarkers and flow volume in wastewater epidemiology[J]. Science of the Total Environment, 2021, 759: 143480. doi: 10.1016/j.scitotenv.2020.143480 [38] GAO J F, ZHENG Q D, LAI F Y, et al. Using wastewater-based epidemiology to estimate consumption of alcohol and nicotine in major cities of China in 2014 and 2016[J]. Environment International, 2020, 136: 105492. doi: 10.1016/j.envint.2020.105492 [39] O'BRIEN J W, BANKS A P W, NOVIC A J, et al. Impact of in-sewer degradation of pharmaceutical and personal care products (PPCPs) population markers on a population model[J]. Environmental Science & Technology, 2017, 51(7): 3816-3823. [40] THAI P K, O’BRIEN J W, TSCHARKE B J, et al. Analyzing wastewater samples collected during census to determine the correction factors of drugs for wastewater-based epidemiology: The case of codeine and methadone[J]. Environmental Science & Technology Letters, 2019, 6(5): 265-269. [41] O'BRIEN J W, THAI P K, EAGLESHAM G, et al. A model to estimate the population contributing to the wastewater using samples collected on census day[J]. Environmental Science & Technology, 2014, 48(1): 517-525. [42] BRUNETTI P, LO FARO A F, Di TRANA A, et al. β’-phenylfentanyl metabolism in primary human hepatocyte incubations: Identification of potential biomarkers of exposure in clinical and forensic toxicology[J]. Journal of Analytical Toxicology, 2023, 46(9): e207-e217. doi: 10.1093/jat/bkac065 [43] LEE K Z H, WANG Z T, FONG C Y, et al. Identification of optimal urinary biomarkers of synthetic cannabinoids BZO-HEXOXIZID, BZO-POXIZID, 5F-BZO-POXIZID, and BZO-CHMOXIZID for illicit abuse monitoring[J]. Clinical Chemistry, 2022, 68(11): 1436-1448. doi: 10.1093/clinchem/hvac138 [44] PIECHOTA P, CRONIN M T D, HEWITT M, et al. Pragmatic approaches to using computational methods to predict xenobiotic metabolism[J]. Journal of Chemical Information and Modeling, 2013, 53(6): 1282-1293. doi: 10.1021/ci400050v [45] ANDRÉS-COSTA M J, ANDREU V, PICÓ Y. Liquid chromatography–mass spectrometry as a tool for wastewater-based epidemiology: Assessing new psychoactive substances and other human biomarkers[J]. TrAC Trends in Analytical Chemistry, 2017, 94: 21-38. doi: 10.1016/j.trac.2017.06.012 [46] CASTRIGNANÒ E, YANG Z G, BADE R, et al. Enantiomeric profiling of chiral illicit drugs in a pan-European study[J]. Water Research, 2018, 130: 151-160. doi: 10.1016/j.watres.2017.11.051 [47] GAO J F, XU Z Q, LI X Q, et al. Enantiomeric profiling of amphetamine and methamphetamine in wastewater: A 7-year study in regional and urban Queensland, Australia[J]. Science of the Total Environment, 2018, 643: 827-834. doi: 10.1016/j.scitotenv.2018.06.242