[1] DUBEY M, KUMAR R, SRIVASTAVA S K, et al. ZnO/α-MnO2 hybrid 1D nanostructure-based sensor for point-of-care monitoring of chlorinated phenol in drinking water[J]. Materials Today Chemistry, 2022, 26: 101098. doi: 10.1016/j.mtchem.2022.101098
[2] FERNANDEZ M E, del ROSARIO MOREL M, CLEBOT A C, et al. Effectiveness of a simple biomixture for the adsorption and elimination of 2, 4-dichlorophenoxyacetic acid (2, 4-D) herbicide and its metabolite, 2, 4-dichlorophenol (2, 4-DCP), for a biobed system[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106877. doi: 10.1016/j.jece.2021.106877
[3] 王钱森, 付先炜, 丁念琛, 等. 磁性氧化石墨烯负载酞菁铜的制备及去除2, 4-二氯苯酚研究[J]. 山东化工, 2022, 51(14): 4-7. WANG Q S, FU X W, DING N C, et al. Preparation of copper phthalocyanine supported on magnetic graphene oxide for removal 2, 4-dichlorophenol from aqueous solution[J]. Shandong Chemical Industry, 2022, 51(14): 4-7(in Chinese).
[4] FAN B, WANG X N, XIE Z Y, et al. Aquatic life criteria & human health ambient water quality criteria derivations and probabilistic risk assessments of 7 benzenes in China[J]. Chemosphere, 2021, 274: 129784. doi: 10.1016/j.chemosphere.2021.129784
[5] 何骞. 改性壳聚糖负载铁钯双金属催化剂的制备及对二氯苯酚降解性能研究[D]. 广州: 华南理工大学, 2021. HE Q. Preparation of Fe-Pd bimetallic catalyst supported on modified chitosan and its degradation performance of p-dichlorophenol[D]. Guangzhou: South China University of Technology, 2021 (in Chinese).
[6] TSUKAZAWA K S, LI L, TSE W K F. 2, 4-dichlorophenol exposure induces lipid accumulation and reactive oxygen species formation in zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2021, 230: 113133.
[7] HU Y, LI D, MA X, et al. Effects of 2, 4-dichlorophenol exposure on zebrafish: Implications for the sex hormone synthesis[J]. Aquatic Toxicology, 2021, 236: 105868. doi: 10.1016/j.aquatox.2021.105868
[8] de BERNARDI A, MARINI E, CASUCCI C, et al. Ecotoxicological effects of a synthetic and a natural insecticide on earthworms and soil bacterial community[J]. Environmental Advances, 2022, 8: 100225. doi: 10.1016/j.envadv.2022.100225
[9] HOU K X, YANG Y, ZHU L, et al. Toxicity evaluation of chlorpyrifos and its main metabolite 3, 5, 6-trichloro-2-pyridinol (TCP) to Eisenia fetida in different soils[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 259: 109394.
[10] 张芳, 郜红建, 葛高飞. 苯并[a]芘累积污染对土壤微生物群落功能多样性的影响[J]. 环境化学, 2017, 36(8): 1849-1857. doi: 10.7524/j.issn.0254-6108.2016123002 ZHANG F, GAO H J, GE G F. Effects of cumulative benzo(a)pyrene pollution on functional diversity of microbial community in soil[J]. Environmental Chemistry, 2017, 36(8): 1849-1857 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016123002
[11] REN C L, TENG Y R, CHEN X Y, et al. Impacts of earthworm introduction and cadmium on microbial communities composition and function in soil[J]. Environmental Toxicology and Pharmacology, 2021, 83: 103606. doi: 10.1016/j.etap.2021.103606
[12] 潘政, 郝月崎, 赵丽霞, 等. 蚯蚓在有机污染土壤生物修复中的作用机理与应用[J]. 生态学杂志, 2020, 39(9): 3108-3117. PAN Z, HAO Y Q, ZHAO L X, et al. Mechanism and application of earthworm in bioremediation of soil contaminated with organic pollutants: A review[J]. Chinese Journal of Ecology, 2020, 39(9): 3108-3117 (in Chinese).
[13] Organization for Economic Co-operation and Development. Guideline for Testing of Chemicals No 222, Earthworm Reproduction Test (Eisenia fetida/andrei)[S]. Paris: Organization for Economic Co-operation and Development, 2016.
[14] International Organization for Standardization. Draft: Soil Quality-Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour-Part 1: Test with Earthworms (Eisenia fetida/andrei)[S]. Geneva: International Organization for Standardization, 2008.
[15] AMORIM M J B, RÖMBKE J, SOARES A M V M. Avoidance behaviour of Enchytraeus albidus: Effects of Benomyl, Carbendazim, phenmedipham and different soil types[J]. Chemosphere, 2005, 59(4): 501-510. doi: 10.1016/j.chemosphere.2005.01.057
[16] 生态环境部. 土壤和沉积物 挥发酚的测定 4-氨基安替比林分光光度法: HJ 998—2018[S]. 北京: 中国环境出版社, 2018. Ministry of Ecological Environment. Soil and sediment—Determination of volatile phenolic compounds—4-AAP spectrophotometric method: HJ 998—2018[S]. Beijing: China Environmental Science Press, 2018(in Chinese).
[17] 乔文鹏, 乔玉辉, 孙振钧. 氯化镉、马拉硫磷和乙草胺对赤子爱胜蚓的单一急性毒性[J]. 农业环境科学学报, 2007, 26(B10): 514-518. QIAO W P, QIAO Y H, SUN Z. Acute toxicity of cadmium chloride, malathion, acetochlor on earthworm (Eisenia fetida)[J]. Journal of Agro-Environment Science, 2007, 26(B10): 514-518 (in Chinese).
[18] CHENG Y L, ZHU L S, SONG W H, et al. Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida)[J]. Science of the Total Environment, 2020, 746: 141280. doi: 10.1016/j.scitotenv.2020.141280
[19] MARKAD V L, KODAM K M, GHOLE V S. Effect of fly ash on biochemical responses and DNA damage in earthworm, Dichogaster curgensis[J]. Journal of Hazardous Materials, 2012, 215/216: 191-198. doi: 10.1016/j.jhazmat.2012.02.053
[20] 王轶, 刁晓平, 张先勇. 莫能菌素对蚯蚓的生态毒理效应[J]. 农业环境科学学报, 2010, 29(6): 1091-1097. WANG Y, DIAO X P, ZHANG X Y. Ecotoxicological effects of monensin pollution on earthworm (Eisenia fetida)[J]. Journal of Agro-Environment Science, 2010, 29(6): 1091-1097(in Chinese).
[21] LI M Y, MA X X, WANG Y R, et al. Ecotoxicity of herbicide carfentrazone-ethyl towards earthworm (Eisenia fetida) in soil[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 253: 109250.
[22] SOARES C, de SOUSA A, PINTO A, et al. Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress[J]. Environmental and Experimental Botany, 2016, 122: 115-125. doi: 10.1016/j.envexpbot.2015.09.010
[23] QIAO Z H, LI P Y, TAN J Q, et al. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system[J]. Journal of Environmental Management, 2022, 322: 115989. doi: 10.1016/j.jenvman.2022.115989
[24] HASCHEK W M, ROUSSEAUX C G, WALLIG M A. Haschek and Rousseaux's Handbook of Toxicologic Pathology (Fourth Edition)[M]. Academic Press. 2022: 1-12.
[25] HE F L, LI X X, HUO C Q, et al. Evaluation of fluorene-caused ecotoxicological responses and the mechanism underlying its toxicity in Eisenia fetida: Multi-level analysis of biological organization[J]. Journal of Hazardous Materials, 2022, 437: 129342. doi: 10.1016/j.jhazmat.2022.129342
[26] 郭佳葳, 周世萍, 刘守庆, 等. 蚯蚓生物标志物在土壤生态系统监测中的应用研究进展[J]. 生态毒理学报, 2020, 15(5): 69-81 GUO J W, ZHOU S P, LIU S Q, et al. Advances in application of earthworm biomarkers in monitoring soil ecosystem[J]. Asian Journal of Ecotoxicology, 2020, 15(5): 69-81(in Chinese).
[27] 李芬, 林雪儿, 黄慧雯, 等. 探究蚯蚓对食用油污染土壤的回避行为[J]. 中学生物教学, 2020, 23: 67-69. LI F, LIN X E, HUANG H W, et al. Explore the avoidance behavior of earthworms to edible oil contaminated soil[J]. Middle School Biology Teaching, 2020, 23: 67-69 (in Chinese).
[28] 黄盼盼, 周启星. 石油污染土壤对蚯蚓的致死效应及回避行为的影响[J]. 生态毒理学报, 2012, 7(3): 312-316 HUANG P P, ZHOU Q X. Effects of petroleum-contaminated soil on lethality and avoidance behavior of the earthworm (Eisenia fetida)[J]. Asian Journal of Ecotoxicolog, 2012, 7(3): 312-316(in Chinese).
[29] 郭印丽, 李梦耀, 张晓松, 等. 2, 4-二氯苯酚在黄土性土壤中的吸附与解吸[J]. 应用化工, 2014, 43(9): 1640-1643. GUO Y L, LI M Y, ZHANG X S, et al. Study on the adsorption and desorption of 2, 4-diehlorophenol in the loess soil[J]. Applied Chemical Industry, 2014, 43(9): 1640-1643(in Chinese).
[30] 刘文凯, 熊海谦, 包细明, 等. 棚下牛粪养殖蚯蚓技术[J]. 湖北畜牧兽医, 2021, 42(7): 25-27 LIU W K, XIONG H Q, BAO X M, et al. Technology of cultivating earthworm with cow dung under shed[J]. Hubei Journal of Animal and Veterinary Sciences, 2021, 42(7): 25-27(in Chinese).
[31] WILSON W J, FERRARA N C, BLAKER A L, et al. Escape and avoidance learning in the earthworm Eisenia hortensis[J]. PeerJ, 2014, 2: e250. doi: 10.7717/peerj.250
[32] CUI G Y, AHMAD BHAT S, LI W J, et al. Gut digestion of earthworms significantly attenuates cell-free and-associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles[J]. Science of the Total Environment, 2019, 691: 644-653. doi: 10.1016/j.scitotenv.2019.07.177
[33] CHEN G W, YU H Q, LIU H X, et al. Response of activated sludge to the presence of 2, 4-dichlorophenol in a batch culture system[J]. Process Biochemistry, 2006, 41(8): 1758-1763. doi: 10.1016/j.procbio.2006.03.022
[34] 曹佳, 王冲, 皇彦, 等. 蚯蚓对土壤微生物及生物肥力的影响研究进展[J]. 应用生态学报, 2015, 26(5): 1579-1586. CAO J, WANG C, HUANG Y, et al. Effects of earthworm on soil microbes and biological fertility: A review[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1579-1586(in Chinese).
[35] 张鑫爱. 低强度超声波强化含氮废水生物脱氮研究[D]. 太原: 太原理工大学, 2019. ZHANG X A. Study on enhanced biological denitrification of nitrogen-containing wastewater by low-intensity ultrasound[D]. Taiyuan: Taiyuan University of Technology, 2019(in Chinese).
[36] ZHENG M S, ZHOU N, LIU S F, et al. N2O and NO emission from a biological aerated filter treating coking wastewater: Main source and microbial community[J]. Journal of Cleaner Production, 2019, 213: 365-374. doi: 10.1016/j.jclepro.2018.12.182
[37] EL-BASSI L, ZIADI I, BELGACEM S, et al. Investigations on biofilm forming bacteria involved in biocorrosion of carbon steel immerged in real wastewaters[J]. International Biodeterioration & Biodegradation, 2020, 150: 104960.
[38] ZHENG M Q, ZHU H, HAN Y X, et al. Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale[J]. Bioresource Technology, 2019, 288: 121590. doi: 10.1016/j.biortech.2019.121590
[39] NORAMBUENA J, HANSON T E, BARKAY T, et al. Superoxide dismutase and pseudocatalase increase tolerance to Hg(Ⅱ) in Thermus thermophilus HB27 by maintaining the reduced bacillithiol pool[J]. mBio, 2019, 10(2): e00183-e00119.
[40] 母显杰, 丁舒心, 许继飞, 等. 耐盐苯酚降解菌Staphylococcus sp. 的分离及降解特性[J]. 环境化学, 2020, 39(7): 1985-1995. doi: 10.7524/j.issn.0254-6108.2019050904 MU X J, DING S X, XU J F, et al. Isolation and degradation characteristics of a salt tolerant phenol degrading bacterium Staphylococcus sp. [J]. Environmental Chemistry, 2020, 39(7): 1985-1995 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019050904
[41] JUNG H M, JUNG M Y, OH M K. Metabolic engineering of Klebsiella pneumoniae for the production of cis, cis-muconic acid[J]. Applied Microbiology and Biotechnology, 2015, 99(12): 5217-5225. doi: 10.1007/s00253-015-6442-3
[42] XING W, WANG Y, HAO T Y, et al. pH control and microbial community analysis with HCl or CO2 addition in H2-based autotrophic denitrification[J]. Water Research, 2020, 168: 115200. doi: 10.1016/j.watres.2019.115200
[43] DRAKE H L, HORN M A. As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes[J]. Annual Review of Microbiology, 2007, 61: 169-189. doi: 10.1146/annurev.micro.61.080706.093139
[44] 蔡建林, TENG Hui Henry, 王钺博, 等. 方解石和钾长石在模拟蚯蚓肠液中的初始溶解动力学机理及意义[J]. 岩石矿物学杂志, 2022, 41(4): 818-834. CAI J L, HENRY T H, WANG Y B, et al. Kinetics and mechanistic implications of calcite and K-feldspar initial dissolution in simulated earthworm intestine fluid[J]. Acta Petrologica et Mineralogica, 2022, 41(4): 818-834(in Chinese).
[45] PASS D A, MORGAN A J, READ D S, et al. The effect of anthropogenic arsenic contamination on the earthworm microbiome[J]. Environmental Microbiology, 2015, 17(6): 1884-1896. doi: 10.1111/1462-2920.12712
[46] LIU P, YANG Y, LI M. Responses of soil and earthworm gut bacterial communities to heavy metal contamination[J]. Environmental Pollution, 2020, 265: 114921. doi: 10.1016/j.envpol.2020.114921
[47] GAO C Y, WANG A J, WU W M, et al. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells[J]. Bioresource Technology, 2014, 167: 124-132. doi: 10.1016/j.biortech.2014.05.120
[48] CHEN M X, WANG W C, FENG Y, et al. Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium Aeromonas sp. HN-02[J]. Bioresource Technology, 2014, 167: 456-461. doi: 10.1016/j.biortech.2014.06.001