[1] 杨萌青, 李立明, 李川, 等. 石油污染土壤微生物群落结构与分布特性研究[J]. 环境科学, 2013, 34(2): 789-794. YANG M Q, LI L M, LI C, et al. Microbial community structure and distribution characteristics in oil contaminated soil[J]. Environmental Science, 2013, 34(2): 789-794(in Chinese).
[2] PACWA-PŁOCINICZAK M, PŁAZA G A, PIOTROWSKA-SEGET Z. Monitoring the changes in a bacterial community in petroleum-polluted soil bioaugmented with hydrocarbon-degrading strains[J]. Applied Soil Ecology, 2016, 105: 76-85. doi: 10.1016/j.apsoil.2016.04.005
[3] WU M L, DICK W A, LI W, et al. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil[J]. International Biodeterioration & Biodegradation, 2016, 107: 158-164.
[4] SAFDARI M S, KARIMINIA H R, RAHMATI M, et al. Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil[J]. Journal of Hazardous Materials, 2018, 342: 270-278. doi: 10.1016/j.jhazmat.2017.08.044
[5] GAO Y C, DU J H, BAHAR M M, et al. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil[J]. Chemosphere, 2021, 271: 129566. doi: 10.1016/j.chemosphere.2021.129566
[6] 刘五星, 骆永明, 滕应, 等. 石油污染土壤的生态风险评价和生物修复 Ⅱ. 石油污染土壤的理化性质和微生物生态变化研究[J]. 土壤学报, 2007, 44(5): 848-853. doi: 10.3321/j.issn:0564-3929.2007.05.011 LIU W X, LUO Y M, TENG Y, et al. Eco-risk assessment and bioremediation of petroleum contaminated soil ⅱ. changes in physico-chemical properties and microbial ecology of petroleum contaminated soil[J]. Acta Pedologica Sinica, 2007, 44(5): 848-853(in Chinese). doi: 10.3321/j.issn:0564-3929.2007.05.011
[7] BUNDY J G, PATON G I, CAMPBELL C D. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil[J]. Soil Biology and Biochemistry, 2004, 36(7): 1149-1159. doi: 10.1016/j.soilbio.2004.02.025
[8] 蔡萍萍, 宁卓, 何泽, 等. 采油井场土壤微生物群落结构分布[J]. 环境科学, 2018, 39(7): 3329-3338. CAI P P, NING Z, HE Z, et al. Microbial community distributions in soils of an oil exploitation site[J]. Environmental Science, 2018, 39(7): 3329-3338(in Chinese).
[9] 贾建丽, 李广贺, 钟毅. 石油污染土壤生物修复中试系统对微生物特性的影响[J]. 环境科学研究, 2007, 20(5): 115-118 JIA J L, LI G H, ZHONG Y. The influence of the microbial properties of oil contaminated soils in the bioremediation pilot systems[J]. Research of Environmental Sciences, 2007, 20(5): 115-118(in Chinese)
[10] POLYAK Y M, BAKINA L G, CHUGUNOVA M V, et al. Effect of remediation strategies on biological activity of oil-contaminated soil - A field study[J]. International Biodeterioration & Biodegradation, 2018, 126: 57-68.
[11] ZHANG Y Y, ZHENG N G, WANG J, et al. High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology[J]. Soil Biology and Biochemistry, 2019, 135: 323-330. doi: 10.1016/j.soilbio.2019.05.023
[12] 赵美玲, 张一鸣, 张志麒, 等. 神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异[J]. 地球科学, 2020, 45(6): 1877-1886. ZHAO M L, ZHANG Y M, ZHANG Z Q, et al. Comparison of microbial community in topsoil among different habitats in Dajiuhu, Hubei Province: Evidence from phospholipid fatty acids[J]. Earth Science, 2020, 45(6): 1877-1886 (in Chinese).
[13] WANG J, CHAPMAN S J, YAO H Y. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications[J]. Applied Soil Ecology, 2016, 101: 11-19. doi: 10.1016/j.apsoil.2016.01.010
[14] 左易灵, 贺学礼, 王少杰, 等. 磷脂脂肪酸(PLFA)法检测蒙古沙冬青根围土壤微生物群落结构[J]. 环境科学, 2016, 37(7): 2705-2713 ZUO Y L, HE X L, WANG S J, et al. Characteristics of soil microbial community structure in the rhizospheric soil of ammopiptanthus mongolicus by phospholipid fatty acid (PLFA)[J]. Environmental Science, 2016, 37(7): 2705-2713(in Chinese)
[15] 王万洁, 侯兴旺, 刘稷燕, 等. 传统稳定同位素技术在环境科学领域的应用及研究进展[J]. 环境化学, 2021, 40(12): 3640-3650. doi: 10.7524/j.issn.0254-6108.2021041601 WANG W J, HOU X W, LIU J Y, et al. Application and research progress of traditional stable isotope technology in environmental science[J]. Environmental Chemistry, 2021, 40(12): 3640-3650(in Chinese). doi: 10.7524/j.issn.0254-6108.2021041601
[16] SILES J A, CAJTHAML T, FROUZ J, et al. Assessment of soil microbial communities involved in cellulose utilization at two contrasting Alpine forest sites[J]. Soil Biology and Biochemistry, 2019, 129: 13-16. doi: 10.1016/j.soilbio.2018.11.004
[17] MARTINEZ-CRUZ K, LEEWIS M C, HERRIOTT I C, et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments[J]. Science of the Total Environment, 2017, 607/608: 23-31. doi: 10.1016/j.scitotenv.2017.06.187
[18] 邓少虹, 郑小东, 毛婉琼, 等. 稻田与旱地土壤中真菌和细菌对秸秆碳的利用特征[J]. 环境科学, 2022, 43(2): 1069-1076. DENG S H, ZHENG X D, MAO W Q, et al. Characteristics of microbial utilization for crop residue-derived C in paddy and upland soils[J]. Environmental Science, 2022, 43(2): 1069-1076(in Chinese).
[19] XU Y D, SUN L J, LAL R, et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfisols[J]. Soil Biology and Biochemistry, 2020, 148: 107901. doi: 10.1016/j.soilbio.2020.107901
[20] 徐英德, 孙良杰, 王阳, 等. 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征[J]. 中国环境科学, 2020, 40(10): 4504-4513. XU Y D, SUN L J, WANG Y, et al. Characteristics of microbial utilization of maize root- and straw derived carbon[J]. China Environmental Science, 2020, 40(10): 4504-4513 (in Chinese).
[21] 许殷瑞, 吴蔓莉, 王丽, 等. 陕北石油污染土壤微生物种群变化及影响因素[J]. 中国环境科学, 2021, 41(9): 4349-4359 doi: 10.3969/j.issn.1000-6923.2021.09.042 XU Y R, WU M L, WANG L, et al. The influences of petroleum pollution on the microbial population distribution in Northern Shaanxi Province of China[J]. China Environmental Science, 2021, 41(9): 4349-4359(in Chinese) doi: 10.3969/j.issn.1000-6923.2021.09.042
[22] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
[23] 邢玥, 吴蔓莉, 刘泽梁, 等. 高浓度含油废水中不同组分烃的生物强化去除特性[J]. 环境化学, 2023, 42(2): 567-574. doi: 10.7524/j.issn.0254-6108.2021102505 XING Y, WU M L, LIU Z L, et al. Removal efficiencies of different components of crude oil by bioaugmentation[J]. Environmental Chemistry, 2023, 42(2): 567-574 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102505
[24] 叶茜琼, 吴蔓莉, 陈凯丽, 等. 微生物修复油污土壤过程中氮素的变化及菌群生态效应[J]. 环境科学, 2017, 38(2): 728-734. YE X Q, WU M L, CHEN K L, et al. Impacts of bioremediation on microbial communities and different forms of nitrogen in petroleum contaminated soil[J]. Environmental Science, 2017, 38(2): 728-734(in Chinese).
[25] 许殷瑞. 陕北采油区土壤微生物群落结构及对石油烃组分的利用机制[D]. 西安: 西安建筑科技大学 . XU Y R. Soil microbial community structure and utilization mechanism of petroleum hydrocarbon components in northern Shaanxi oil production area [D]. Xi'an: Xi 'an University of Architecture and Technology (in Chinese).
[26] 于颖超, 张心昱, 戴晓琴, 等. 亚热带红壤区森林土壤剖面微生物残体碳分布及影响因素[J]. 生态学报, 2022, 42(3): 1108-1117 YU Y C, ZHANG X Y, DAI X Q, et al. Distributions and influencing factors of microbial residue carbon contents in forest soil profiles in subtropical red soil region[J]. Acta Ecologica Sinica, 2022, 42(3): 1108-1117(in Chinese)
[27] SAMAEI M R, MORTAZAVI S B, BAKHSHI B, et al. Investigating the effects of combined bio-enhancement and bio-stimulation on the cleaning of hexadecane-contaminated soils[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106914. doi: 10.1016/j.jece.2021.106914
[28] 郑嘉如, 方战强, 易云强, 等. 基于化学氧化法修复石油烃污染土壤研究进展[J]. 环境化学, 2023, 42(2): 608-626. doi: 10.7524/j.issn.0254-6108.2021092701 ZHENG J R, FANG Z Q, YI Y Q, et al. Research progress on remediation of petroleum hydrocarbon contaminated soil using chemical oxidation[J]. Environmental Chemistry, 2023, 42(2): 608-626(in Chinese). doi: 10.7524/j.issn.0254-6108.2021092701
[29] LIU H, WU M L, GAO H, et al. Crude oil removal by Meyerozyma consortium and nitrogen supplement: Hydrocarbon transformation, nitrogen fate, and enhancement mechanism[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109034. doi: 10.1016/j.jece.2022.109034
[30] KOURTEV P S, EHRENFELD J G, HÄGGBLOM M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities[J]. Soil Biology and Biochemistry, 2003, 35(7): 895-905. doi: 10.1016/S0038-0717(03)00120-2
[31] FANIN N, KARDOL P, FARRELL M, et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J]. Soil Biology and Biochemistry, 2019, 128: 111-114. doi: 10.1016/j.soilbio.2018.10.010
[32] SUN R, THATER B, SHI P, et al. The effect of cowpea (Vigna unguiculata) with root mucilage on phenanthrene (PHE) dissipation and microbial community composition using phospholipid fatty acid (PLFA) analysis and artificial neural network (ANN) modeling[J]. International Biodeterioration & Biodegradation, 2015, 100: 29-37.
[33] 吴蔓莉, 李可欣, 侯爽爽, 等. 贫养分低有机质黄绵土中石油烃的生物去除特性及菌群结构变化[J]. 环境科学研究, 2021, 34(8): 1961-1970 doi: 10.13198/j.issn.1001-6929.2021.04.13 WU M L, LI K X, HOU S S, et al. Petroleum hydrocarbon degradation characteristics and microbial community shift by bioremediation in oligotrophic and low organic matter soil[J]. Research of Environmental Sciences, 2021, 34(8): 1961-1970(in Chinese) doi: 10.13198/j.issn.1001-6929.2021.04.13
[34] WU M L, WU J L, ZHANG X H, et al. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456. doi: 10.1016/j.chemosphere.2019.124456
[35] SUJA F, RAHIM F, TAHA M R, et al. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations[J]. International Biodeterioration & Biodegradation, 2014, 90: 115-122.
[36] 袁庆叶, 安菁, 高俊琴, 等. 芦苇克隆整合对石油污染湿地土壤微生物群落结构和生物量的影响[J]. 生态学报, 2018, 38(1): 215-225. YUAN Q Y, AN J, GAO J Q, et al. Effects of clonal integration of Phragmites australis on the composition and biomass of soil microbial communities in a wetland contaminated by crude oil[J]. Acta Ecologica Sinica, 2018, 38(1): 215-225(in Chinese).
[37] de VRIES F T, HOFFLAND E, van EEKEREN N, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry, 2006, 38(8): 2092-2103. doi: 10.1016/j.soilbio.2006.01.008
[38] MARSCHNER P, UMAR S, BAUMANN K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue[J]. Soil Biology and Biochemistry, 2011, 43(2): 445-451. doi: 10.1016/j.soilbio.2010.11.015
[39] 谷晓楠, 贺红士, 陶岩, 等. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 2017, 37(24): 8374-8384. GU X N, HE H S, TAO Y, et al. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain[J]. Acta Ecologica Sinica, 2017, 37(24): 8374-8384(in Chinese).
[40] COVINO S, D'ANNIBALE A, STAZI S R, et al. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil[J]. Science of the Total Environment, 2015, 505: 545-554. doi: 10.1016/j.scitotenv.2014.10.027
[41] FABIAN J, ZLATANOVIC S, MUTZ M, et al. Fungal–bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality[J]. The ISME Journal, 2017, 11(2): 415-425. doi: 10.1038/ismej.2016.131
[42] 魏圆云, 崔丽娟, 张曼胤, 等. 土壤有机碳矿化激发效应的微生物机制研究进展[J]. 生态学杂志, 2019, 38(4): 1202-1211. doi: 10.13292/j.1000-4890.201904.008 WEI Y Y, CUI L J, ZHANG M Y, et al. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization[J]. Chinese Journal of Ecology, 2019, 38(4): 1202-1211(in Chinese). doi: 10.13292/j.1000-4890.201904.008
[43] FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: A question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843. doi: 10.1016/S0038-0717(03)00123-8
[44] BLAGODATSKAYA Е, KUZYAKOV Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131. doi: 10.1007/s00374-008-0334-y
[45] MAZZILLI S R, KEMANIAN A R, ERNST O R, et al. Priming of soil organic carbon decomposition induced by corn compared to soybean crops[J]. Soil Biology and Biochemistry, 2014, 75: 273-281. doi: 10.1016/j.soilbio.2014.04.005
[46] GAO H, WU M L, LIU H, et al. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function[J]. Environmental Pollution, 2022, 293: 118511. doi: 10.1016/j.envpol.2021.118511
[47] WU M L, LIU Z L, GAO H, et al. Assessment of bioremediation potential of petroleum-contaminated soils from the Shanbei oilfield of China revealed by qPCR and high throughput sequencing[J]. Chemosphere, 2022, 308: 136446. doi: 10.1016/j.chemosphere.2022.136446
[48] 李海兰. 低渗透油藏定向激活石油烃降解菌及其采油机理研究[D]. 北京: 中国石油大学(北京) . LI H L. Study on directional activation of petroleum hydrocarbon degrading bacteria and its oil recovery mechanism in low permeability reservoirs[D]. Beijing: China University of Petroleum(Beiiing) (in Chinese).
[49] ZHEN L S, HU T, LV R, et al. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation[J]. Journal of Hazardous Materials, 2021, 410: 124869. doi: 10.1016/j.jhazmat.2020.124869
[50] GU D C, XIANG X J, WU Y C, et al. Synergy between fungi and bacteria promotes polycyclic aromatic hydrocarbon cometabolism in lignin-amended soil[J]. Journal of Hazardous Materials, 2022, 425: 127958. doi: 10.1016/j.jhazmat.2021.127958