[1] BELTRAN DE HEREDIA J, TORREGROSA J, DOMINGUEZ J R, et al. Kinetic model for phenolic compound oxidation by Fenton’s reagent[J]. Chemosphere, 2001, 45(1): 85-90. doi: 10.1016/S0045-6535(01)00056-X
[2] CHENG S N, YUAN Z S, LEITCH M, et al. Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio[J]. Industrial Crops and Products, 2013, 44: 315-322. doi: 10.1016/j.indcrop.2012.10.033
[3] MICHALOWICZ J, DUDA W. Phenols- sources and toxicity[J]. Polish Journal of Environmental Studies, 2008, 16(3): 347-362.
[4] MA H P, WANG H L, TIAN C C, et al. An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge[J]. Journal of Cleaner Production, 2021, 291: 125842. doi: 10.1016/j.jclepro.2021.125842
[5] LI B, HU X Q, LIU R X, et al. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds[J]. Environmental Earth Sciences, 2015, 73(9): 5095-5106. doi: 10.1007/s12665-015-4299-5
[6] CHEN K C, LIN Y H, CHEN W H, et al. Degradation of phenol by PAA-immobilized Candida tropicalis[J]. Enzyme and Microbial Technology, 2002, 31(4): 490-497. doi: 10.1016/S0141-0229(02)00148-5
[7] BIGLARI H, AFSHARNIA M, ALIPOUR V, et al. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry[J]. Environmental Science and Pollution Research, 2017, 24(4): 4105-4116. doi: 10.1007/s11356-016-8079-x
[8] BAO K, YAN C C, NIU D L, et al. Persulfate oxidation enhanced extraction to improve the removal of high concentration phenol wastewater[J]. Environmental Science:Water Research & Technology, 2022, 8(5): 981-997.
[9] XU R, ZHAO Y H, HAN Q Z, et al. Computer-aided blended extractant design and screening for co-extracting phenolic, polycyclic aromatic hydrocarbons and nitrogen heterocyclic compounds pollutants from coal chemical wastewater[J]. Journal of Cleaner Production, 2020, 277: 122334. doi: 10.1016/j.jclepro.2020.122334
[10] REN S, DENG J, MENG Z F, et al. Enhanced removal of phenol by novel magnetic bentonite composites modified with amphoteric-cationic surfactants[J]. Powder Technology, 2019, 356: 284-294. doi: 10.1016/j.powtec.2019.08.024
[11] STRIKWOLD M, SPENKELINK B, DE HAAN L H J, et al. Integrating in vitro data and physiologically based kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols[J]. Archives of Toxicology, 2017, 91(5): 2119-2133. doi: 10.1007/s00204-016-1881-x
[12] SUN J L, ZENG H, NI H G. Halogenated polycyclic aromatic hydrocarbons in the environment[J]. Chemosphere, 2013, 90(6): 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094
[13] FERNÁNDEZ L, BORRÁS C, CARRERO H. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode[J]. Electrochimica Acta, 2006, 52(3): 872-884. doi: 10.1016/j.electacta.2006.06.021
[14] NURDIN M, MAULIDIYAH M, WATONI A H, et al. Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 209-215. doi: 10.1007/s11814-021-0938-6
[15] DUAN W Y, MENG F P, CUI H W, et al. Ecotoxicity of phenol and cresols to aquatic organisms: A review[J]. Ecotoxicology and Environmental Safety, 2018, 157: 441-456. doi: 10.1016/j.ecoenv.2018.03.089
[16] GONG Y, DING P, XU M J, et al. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions[J]. Journal of Environmental Management, 2021, 289: 112525. doi: 10.1016/j.jenvman.2021.112525
[17] WANG Y X, SUN H Q, DUAN X G, et al. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol[J]. Applied Catalysis B:Environmental, 2015, 172/173: 73-81. doi: 10.1016/j.apcatb.2015.02.016
[18] van BREUKELEN B M. Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh equation[J]. Environmental Science & Technology, 2007, 41(14): 4980-4985.
[19] XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642
[20] ERTO A, BORTONE I, DI NARDO A, et al. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds[J]. Journal of Environmental Management, 2014, 140: 111-119.
[21] SUTTON N B, ATASHGAHI S, VAN DER WAL J, et al. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents[J]. Ground Water, 2015, 53(2): 261-270. doi: 10.1111/gwat.12209
[22] DOMINGUEZ C M, ROMERO A, LORENZO D, et al. Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater[J]. Journal of Environmental Management, 2020, 261: 110240. doi: 10.1016/j.jenvman.2020.110240
[23] CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review[J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001
[24] DOMINGUEZ C M, OTURAN N, ROMERO A, et al. Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation[J]. Environmental Science and Pollution Research, 2018, 25(35): 34985-34994. doi: 10.1007/s11356-018-1425-4
[25] ZHANG H Y, YUAN X Z, XIONG T, et al. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods[J]. Chemical Engineering Journal, 2020, 398: 125657. doi: 10.1016/j.cej.2020.125657
[26] OSSAI I C, AHMED A, HASSAN A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: A review[J]. Environmental Technology & Innovation, 2020, 17: 100526.
[27] ZHANG J, ZHAO Y, LIU Y Q, et al. Pd/PANI/Ti composite electrocatalyst with efficient electrocatalytic performance: Synthesis, characterization, stability, kinetic studies, and degradation mechanism[J]. Journal of Alloys and Compounds, 2022, 902: 163723. doi: 10.1016/j.jallcom.2022.163723
[28] HASSAN M F, SABRI M A, FAZAL H, et al. Recent trends in activated carbon fibers production from various precursors and applications—a comparative review[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104715. doi: 10.1016/j.jaap.2019.104715
[29] MUHAMAD M H, SHEIKH ABDULLAH S R, MOHAMAD A B, et al. Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2, 4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR)[J]. Journal of Environmental Management, 2013, 121: 179-190.
[30] Dell' ARMI E, ZEPPILLI M, Di FRANCA M L, et al. Evaluation of a bioelectrochemical reductive/oxidative sequential process for chlorinated aliphatic hydrocarbons (CAHs) removal from a real contaminated groundwater[J]. Journal of Water Process Engineering, 2022, 49: 103101. doi: 10.1016/j.jwpe.2022.103101
[31] DU C M, SHANG C, WANG T, et al. Study of the process and mechanism of the remediation of phenol contaminated soil by plasma vibrated bed[J]. Plasma Chemistry and Plasma Processing, 2017, 37(6): 1635-1653. doi: 10.1007/s11090-017-9850-6
[32] FALLAHPOUR N, MAO X H, RAJIC L, et al. Electrochemical dechlorination of trichloroethylene in the presence of natural organic matter, metal ions and nitrates in a simulated Karst media[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 240-245. doi: 10.1016/j.jece.2016.11.046
[33] YANG K X, KONG Y J, HUANG L Z, et al. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts[J]. Chemical Engineering Journal, 2022, 450: 138467. doi: 10.1016/j.cej.2022.138467
[34] XIE J Z, ZHANG C Y, WAITE T D. Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification[J]. Water Research, 2022, 217: 118425. doi: 10.1016/j.watres.2022.118425
[35] ROJO A, HANSEN H K, MONÁRDEZ O. Electrokinetic remediation of mine tailings by applying a pulsed variable electric field[J]. Minerals Engineering, 2014, 55: 52-56. doi: 10.1016/j.mineng.2013.09.004
[36] XU J W, LIU C, HSU P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10: 2440. doi: 10.1038/s41467-019-10472-x
[37] HRISTOVA D, BETOVA I, TZVETKOFF T. An electrochemical and analytical characterization of surface films on AISI 316 as electrode material for pulse electrolysis of water[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8232-8243. doi: 10.1016/j.ijhydene.2013.04.127
[38] RYU B G, YANG J S, KIM D H, et al. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil[J]. Journal of Applied Electrochemistry, 2010, 40(6): 1039-1047. doi: 10.1007/s10800-009-0046-5
[39] GENG Z N, LIU B, LI G H, et al. Enhancing DNAPL removal from low permeability zone using electrical resistance heating with pulsed direct current[J]. Journal of Hazardous Materials, 2021, 413: 125455. doi: 10.1016/j.jhazmat.2021.125455
[40] JUHL A D. Flipping the switch on anodizing[J]. Products Finishing, 2012, 76(6): 28-31.
[41] SHU J C, SUN X L, LIU R L, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025
[42] RYU B G, PARK S W, BAEK K, et al. Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals[J]. Separation Science and Technology, 2009, 44(10): 2421-2436. doi: 10.1080/01496390902983778
[43] WEI J J, ZHU X P, NI J R. Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode[J]. Electrochimica Acta, 2011, 56(15): 5310-5315. doi: 10.1016/j.electacta.2011.04.006
[44] LU Z H, TANG J L, de LOURDES MENDOZA M, et al. Electrochemical decrease of sulfide in sewage by pulsed power supply[J]. Journal of Electroanalytical Chemistry, 2015, 745: 37-43. doi: 10.1016/j.jelechem.2015.02.014
[45] PEI S Z, YOU S J, ZHANG J N. Application of pulsed electrochemistry to enhanced water decontamination[J]. ACS ES& T Engineering, 2021, 1(11): 1502-1508.
[46] YUAN C, CHEN C Y, HUNG C H. Electrochemical remediation of BPA in a soil matrix by Pd/Ti and RuO2/Ti electrodes[J]. Journal of Applied Electrochemistry, 2013, 43(12): 1163-1174. doi: 10.1007/s10800-013-0600-z