-
随着经济的快速发展,工业生产如炼焦炼油、冶金制药等过程中都会产生高浓度的含酚废水[1 − 6]. 酚类污染物由于其广泛的用途、高稳定性及环境毒性,成为水环境中最有害的一类污染物,对人类健康和生态环境产生严重的影响[7 − 16]. 因此如何绿色环保地去降解酚类污染物是研究的热点之一,对保护环境具有极其重要的现实意义[17]. 废水处理方法包括自然衰减法[18]、物理法[19 − 20]、化学法[21 − 24]、生物法[21, 25 − 26]、物理化学法[27- 28]、物理生物法[29]、生物化学法[26, 30]等,但这些废水处理方法可能存在二次污染,处理不彻底、处理时间长、经济成本较高等缺点[31]. 二十大提出“要加快发展方式绿色转型,推动形成绿色低碳的生产方式和生活方式”,凸显出开发一种绿色高效降解含酚废水技术的必要性和紧迫性. 电化学降解可以使用来自风能和太阳能的可再生电力,是一种绿色环保去除酚类污染物的替代方法,具有处理效率高、无二次污染、环境友好、操作条件温和、适用范围广等优点[32 − 34].
传统电化学降解污染物多采用的恒压或恒流供电模式,但是在污染物浓度不高,共存物质较多的情况下,竞争副反应严重导致电流效率低、能耗高,而方波脉冲供电方式可以减少周期内的供电时间[35 − 36];增大电流效率,提高电能利用率[37 − 39];通过调节脉冲参数减少副反应、提高反应选择性[40 − 42],因此方波脉冲电化学处理技术是一种具有更高能源效率且有前途的替代方法[37, 43]. 本研究以绿色低耗去除酚类污染物为目标,开展方波脉冲电化学处理废水中酚类污染物的降解研究,考察方波脉冲体系(电压波形、脉冲占空比、脉冲频率等)对酚类污染物的去除率及能耗的影响规律,综合评估方波脉冲电化学处理技术对酚类污染物的去除效能,为建立低耗高效去除废水中酚类污染物的方波脉冲电化学处理技术提供基础数据和理论指导.
方波脉冲电化学处理含酚废水
Research on the process of square wave pulse electrochemical treatment of phenol-containing wastewater
-
摘要: 以绿色低耗去除酚类污染物为目标,开展方波脉冲电化学处理废水中酚类污染物的降解研究,考察方波脉冲体系(电压波形、脉冲占空比、脉冲频率等参数)对酚类污染物的去除率及比能耗的影响规律,提出最佳工艺及实验参数. 结果表明,在电化学反应体系中,脉冲电压、电压波形和脉冲占空比对去除率、平均电流效率和比能耗的影响较为显著,而脉冲频率的影响较小. 在脉冲电压4 V,占空比为50%,脉冲频率为100 Hz的最佳工艺条件下,对苯酚的去除率为62.03%,比能耗为4.84 kWh·kg−1. 因此,相比于直流供电模式,方波脉冲供电模式降解苯酚废水的电能利用率更高,能耗更低,选择性更强,为电化学处理废水提供了一种绿色环保的方法.Abstract: The degradation of phenolic pollutants in wastewater by square wave pulse electrochemical treatment was studied with the goal of green and low consumption removal of phenolic pollutants. The effects of square wave pulse system ( voltage waveform, pulse duty cycle, pulse frequency and other parameters ) on the removal rate and specific energy consumption of phenolic pollutants were investigated, and the optimum process and experimental parameters were proposed. The results show that the pulse voltage, voltage waveform and pulse duty cycle have significant effects on the removal rate, average current efficiency and specific energy consumption in the electrochemical reaction system, while the pulse frequency has little effect. Under the optimum conditions of pulse voltage 4 V, duty cycle 50% and pulse frequency 100 Hz, the removal rate of phenol was 62.03%, and the specific energy consumption was 4.84 kWh·kg−1. Therefore, compared with the DC power supply mode, the square wave pulse power supply mode has higher power utilization rate, lower energy consumption and stronger selectivity for the degradation of phenol wastewater, which provides a green and environmentally friendly method for electrochemical treatment of wastewater.
-
Key words:
- green low consumption /
- square wave pulse /
- electrochemical oxidation /
- duty cycle /
- frequency.
-
表 1 不同电压下苯酚去除的伪一级动力学拟合分析表
Table 1. Pseudo-first-order kinetic fitting analysis of phenol removal at different voltage
电压/V
Voltage拟合方程
Fitting equation反应常数k/min−1
Reaction constant拟合系数
R23.0 y= 0.00093 x+0.01899 0.00093 0.93826 3.5 y= 0.00212 x−0.01377 0.00212 0.99332 4.0 y= 0.00417 x−0.05806 0.00417 0.98183 4.5 y= 0.00442 x−0.07184 0.00442 0.97660 表 2 不同脉冲占空比下苯酚去除的伪一级动力学拟合分析表
Table 2. Pseudo-first-order kinetic fitting analysis of phenol removal at different pulse duty ratios
脉冲占空比/%
Pulse duty ratios拟合方程
Fitting equation反应常数k/min−1
Reaction constant拟合系数
R230 y= 0.00198 x+0.00173 0.00198 0.97025 50 y= 0.00417 x−0.05806 0.00417 0.98183 70 y= 0.00503 x−0.07707 0.00503 0.98306 90 y= 0.00598 x−0.08038 0.00598 0.98797 表 3 不同脉冲频率下苯酚去除的伪一级动力学拟合分析表
Table 3. Pseudo-first-order kinetic fitting analysis of phenol removal at different pulse frequencies
脉冲频率/Hz
Pulse frequencies拟合方程
Fitting equation反应常数k/min−1
Reaction constant拟合系数
R210 y= 0.00338 x−0.0735 0.00338 0.96333 50 y= 0.00359 x−0.06838 0.00359 0.97113 100 y= 0.00391 x−0.05932 0.00391 0.96189 200 y= 0.00384 x−0.07331 0.00384 0.96776 表 4 直流供电模式下不同电压苯酚去除的伪一级动力学拟合分析表
Table 4. Pseudo-level kinetic fitting analysis table for different voltage phenol removal in DC supply mode
电压/V
Voltage拟合方程
Fitting equation反应常数k/min−1
Reaction constant拟合系数
R23.0 y= 0.00166 x+0.03554 0.00166 0.96027 3.5 y= 0.00341 x+0.01281 0.00341 0.99934 4.0 y= 0.00758 x−0.14563 0.00758 0.97333 4.5 y= 0.00730 x−0.12982 0.0073 0.97619 -
[1] BELTRAN DE HEREDIA J, TORREGROSA J, DOMINGUEZ J R, et al. Kinetic model for phenolic compound oxidation by Fenton’s reagent[J]. Chemosphere, 2001, 45(1): 85-90. doi: 10.1016/S0045-6535(01)00056-X [2] CHENG S N, YUAN Z S, LEITCH M, et al. Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio[J]. Industrial Crops and Products, 2013, 44: 315-322. doi: 10.1016/j.indcrop.2012.10.033 [3] MICHALOWICZ J, DUDA W. Phenols- sources and toxicity[J]. Polish Journal of Environmental Studies, 2008, 16(3): 347-362. [4] MA H P, WANG H L, TIAN C C, et al. An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge[J]. Journal of Cleaner Production, 2021, 291: 125842. doi: 10.1016/j.jclepro.2021.125842 [5] LI B, HU X Q, LIU R X, et al. Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds[J]. Environmental Earth Sciences, 2015, 73(9): 5095-5106. doi: 10.1007/s12665-015-4299-5 [6] CHEN K C, LIN Y H, CHEN W H, et al. Degradation of phenol by PAA-immobilized Candida tropicalis[J]. Enzyme and Microbial Technology, 2002, 31(4): 490-497. doi: 10.1016/S0141-0229(02)00148-5 [7] BIGLARI H, AFSHARNIA M, ALIPOUR V, et al. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry[J]. Environmental Science and Pollution Research, 2017, 24(4): 4105-4116. doi: 10.1007/s11356-016-8079-x [8] BAO K, YAN C C, NIU D L, et al. Persulfate oxidation enhanced extraction to improve the removal of high concentration phenol wastewater[J]. Environmental Science:Water Research & Technology, 2022, 8(5): 981-997. [9] XU R, ZHAO Y H, HAN Q Z, et al. Computer-aided blended extractant design and screening for co-extracting phenolic, polycyclic aromatic hydrocarbons and nitrogen heterocyclic compounds pollutants from coal chemical wastewater[J]. Journal of Cleaner Production, 2020, 277: 122334. doi: 10.1016/j.jclepro.2020.122334 [10] REN S, DENG J, MENG Z F, et al. Enhanced removal of phenol by novel magnetic bentonite composites modified with amphoteric-cationic surfactants[J]. Powder Technology, 2019, 356: 284-294. doi: 10.1016/j.powtec.2019.08.024 [11] STRIKWOLD M, SPENKELINK B, DE HAAN L H J, et al. Integrating in vitro data and physiologically based kinetic (PBK) modelling to assess the in vivo potential developmental toxicity of a series of phenols[J]. Archives of Toxicology, 2017, 91(5): 2119-2133. doi: 10.1007/s00204-016-1881-x [12] SUN J L, ZENG H, NI H G. Halogenated polycyclic aromatic hydrocarbons in the environment[J]. Chemosphere, 2013, 90(6): 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094 [13] FERNÁNDEZ L, BORRÁS C, CARRERO H. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode[J]. Electrochimica Acta, 2006, 52(3): 872-884. doi: 10.1016/j.electacta.2006.06.021 [14] NURDIN M, MAULIDIYAH M, WATONI A H, et al. Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 209-215. doi: 10.1007/s11814-021-0938-6 [15] DUAN W Y, MENG F P, CUI H W, et al. Ecotoxicity of phenol and cresols to aquatic organisms: A review[J]. Ecotoxicology and Environmental Safety, 2018, 157: 441-456. doi: 10.1016/j.ecoenv.2018.03.089 [16] GONG Y, DING P, XU M J, et al. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions[J]. Journal of Environmental Management, 2021, 289: 112525. doi: 10.1016/j.jenvman.2021.112525 [17] WANG Y X, SUN H Q, DUAN X G, et al. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol[J]. Applied Catalysis B:Environmental, 2015, 172/173: 73-81. doi: 10.1016/j.apcatb.2015.02.016 [18] van BREUKELEN B M. Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh equation[J]. Environmental Science & Technology, 2007, 41(14): 4980-4985. [19] XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642 [20] ERTO A, BORTONE I, DI NARDO A, et al. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds[J]. Journal of Environmental Management, 2014, 140: 111-119. [21] SUTTON N B, ATASHGAHI S, VAN DER WAL J, et al. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents[J]. Ground Water, 2015, 53(2): 261-270. doi: 10.1111/gwat.12209 [22] DOMINGUEZ C M, ROMERO A, LORENZO D, et al. Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater[J]. Journal of Environmental Management, 2020, 261: 110240. doi: 10.1016/j.jenvman.2020.110240 [23] CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review[J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001 [24] DOMINGUEZ C M, OTURAN N, ROMERO A, et al. Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation[J]. Environmental Science and Pollution Research, 2018, 25(35): 34985-34994. doi: 10.1007/s11356-018-1425-4 [25] ZHANG H Y, YUAN X Z, XIONG T, et al. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods[J]. Chemical Engineering Journal, 2020, 398: 125657. doi: 10.1016/j.cej.2020.125657 [26] OSSAI I C, AHMED A, HASSAN A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: A review[J]. Environmental Technology & Innovation, 2020, 17: 100526. [27] ZHANG J, ZHAO Y, LIU Y Q, et al. Pd/PANI/Ti composite electrocatalyst with efficient electrocatalytic performance: Synthesis, characterization, stability, kinetic studies, and degradation mechanism[J]. Journal of Alloys and Compounds, 2022, 902: 163723. doi: 10.1016/j.jallcom.2022.163723 [28] HASSAN M F, SABRI M A, FAZAL H, et al. Recent trends in activated carbon fibers production from various precursors and applications—a comparative review[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104715. doi: 10.1016/j.jaap.2019.104715 [29] MUHAMAD M H, SHEIKH ABDULLAH S R, MOHAMAD A B, et al. Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2, 4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR)[J]. Journal of Environmental Management, 2013, 121: 179-190. [30] Dell' ARMI E, ZEPPILLI M, Di FRANCA M L, et al. Evaluation of a bioelectrochemical reductive/oxidative sequential process for chlorinated aliphatic hydrocarbons (CAHs) removal from a real contaminated groundwater[J]. Journal of Water Process Engineering, 2022, 49: 103101. doi: 10.1016/j.jwpe.2022.103101 [31] DU C M, SHANG C, WANG T, et al. Study of the process and mechanism of the remediation of phenol contaminated soil by plasma vibrated bed[J]. Plasma Chemistry and Plasma Processing, 2017, 37(6): 1635-1653. doi: 10.1007/s11090-017-9850-6 [32] FALLAHPOUR N, MAO X H, RAJIC L, et al. Electrochemical dechlorination of trichloroethylene in the presence of natural organic matter, metal ions and nitrates in a simulated Karst media[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 240-245. doi: 10.1016/j.jece.2016.11.046 [33] YANG K X, KONG Y J, HUANG L Z, et al. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts[J]. Chemical Engineering Journal, 2022, 450: 138467. doi: 10.1016/j.cej.2022.138467 [34] XIE J Z, ZHANG C Y, WAITE T D. Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification[J]. Water Research, 2022, 217: 118425. doi: 10.1016/j.watres.2022.118425 [35] ROJO A, HANSEN H K, MONÁRDEZ O. Electrokinetic remediation of mine tailings by applying a pulsed variable electric field[J]. Minerals Engineering, 2014, 55: 52-56. doi: 10.1016/j.mineng.2013.09.004 [36] XU J W, LIU C, HSU P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10: 2440. doi: 10.1038/s41467-019-10472-x [37] HRISTOVA D, BETOVA I, TZVETKOFF T. An electrochemical and analytical characterization of surface films on AISI 316 as electrode material for pulse electrolysis of water[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8232-8243. doi: 10.1016/j.ijhydene.2013.04.127 [38] RYU B G, YANG J S, KIM D H, et al. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil[J]. Journal of Applied Electrochemistry, 2010, 40(6): 1039-1047. doi: 10.1007/s10800-009-0046-5 [39] GENG Z N, LIU B, LI G H, et al. Enhancing DNAPL removal from low permeability zone using electrical resistance heating with pulsed direct current[J]. Journal of Hazardous Materials, 2021, 413: 125455. doi: 10.1016/j.jhazmat.2021.125455 [40] JUHL A D. Flipping the switch on anodizing[J]. Products Finishing, 2012, 76(6): 28-31. [41] SHU J C, SUN X L, LIU R L, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025 [42] RYU B G, PARK S W, BAEK K, et al. Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals[J]. Separation Science and Technology, 2009, 44(10): 2421-2436. doi: 10.1080/01496390902983778 [43] WEI J J, ZHU X P, NI J R. Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode[J]. Electrochimica Acta, 2011, 56(15): 5310-5315. doi: 10.1016/j.electacta.2011.04.006 [44] LU Z H, TANG J L, de LOURDES MENDOZA M, et al. Electrochemical decrease of sulfide in sewage by pulsed power supply[J]. Journal of Electroanalytical Chemistry, 2015, 745: 37-43. doi: 10.1016/j.jelechem.2015.02.014 [45] PEI S Z, YOU S J, ZHANG J N. Application of pulsed electrochemistry to enhanced water decontamination[J]. ACS ES& T Engineering, 2021, 1(11): 1502-1508. [46] YUAN C, CHEN C Y, HUNG C H. Electrochemical remediation of BPA in a soil matrix by Pd/Ti and RuO2/Ti electrodes[J]. Journal of Applied Electrochemistry, 2013, 43(12): 1163-1174. doi: 10.1007/s10800-013-0600-z