[1] PENG Y, ZHANG A J, DONG M, et al. A colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP)[J]. Chemical Communications, 2011, 47(15): 4505-4507. doi: 10.1039/c1cc10400d
[2] ZHOU X H, LI L, LI H H, et al. A flexible Eu(Ⅲ)-based metal–organic framework: turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid[J]. Dalton Transactions, 2013, 42(34): 12403-12409. doi: 10.1039/c3dt51081f
[3] ZHAO J, FAN Z F. Aggregation-induced phosphorescence quenching method for the detection of picric acid based on melamine-passivated Mn-doped ZnS quantum dots[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 223: 117323. doi: 10.1016/j.saa.2019.117323
[4] WANG X C, LI X J, LI X, et al. Determination of 2, 4, 6-trinitrophenol by in-situ assembly of SBA-15 with multi-hydroxyl carbon dots[J]. Analytica Chimica Acta, 2020, 1098: 170-180. doi: 10.1016/j.aca.2019.11.061
[5] CHAKRAVARTY S, GOGOI B, SARMA N S. Fluorescent probes for detection of picric acid explosive: A greener approach[J]. Journal of Luminescence, 2015, 165: 6-14. doi: 10.1016/j.jlumin.2015.04.006
[6] MALIK A H, HUSSAIN S, KALITA A, et al. Conjugated polymer nanoparticles for the amplified detection of nitro-explosive picric acid on multiple platforms[J]. ACS Applied Materials and Interfaces, 2015, 7(48): 26968-26976. doi: 10.1021/acsami.5b08068
[7] WYMAN J F, GUARD H E, WON W D, et al. Conversion of 2, 4, 6-trinitrophenol to a mutagen by Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 1979, 37(2): 222-226. doi: 10.1128/aem.37.2.222-226.1979
[8] TRINH D T T, KHANITCHAIDECHA W, CHANNEI D, et al. Synthesis, characterization and environmental applications of bismuth vanadate[J]. Research on Chemical Intermediates, 2019, 45(10): 5217-5259. doi: 10.1007/s11164-019-03912-2
[9] LI J F, ZHANG L, LI P, et al. One step hydrothermal synthesis of carbon nanodots to realize the fluorescence detection of picric acid in real samples[J]. Sensors and Actuators B:Chemical, 2018, 258: 580-588. doi: 10.1016/j.snb.2017.11.096
[10] CHEN X F, SUN C M, LIU Y, et al. All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid[J]. Chemical Engineering Journal, 2020, 379: 122360. doi: 10.1016/j.cej.2019.122360
[11] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
[12] XUE M Y, ZHAN Z H, ZOU M B, et al. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging[J]. New Journal of Chemistry, 2016, 40(2): 1698-1703. doi: 10.1039/C5NJ02181B
[13] ZHENG Y C, WANG S, LI R F, et al. Highly selective detection of nitroaromatic explosive 2, 4, 6-trinitrophenol (TNP) using N-doped carbon dots[J]. Research on Chemical Intermediates, 2021, 47(6): 2421-2431. doi: 10.1007/s11164-021-04410-0
[14] ZHANG D, YE K, YAO Y C, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber[J]. Carbon, 2019, 142: 278-284. doi: 10.1016/j.carbon.2018.10.062
[15] YU H W, LI X Y, ZENG X Y, et al. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene[J]. Chemical Communications, 2015, 52(4): 819-822.
[16] HUANG H G, YANG S W, LI Q T, et al. Electrochemical cutting in weak aqueous electrolytes: the strategy for efficient and controllable preparation of graphene quantum dots[J]. Langmuir, 2018, 34(1): 250-258. doi: 10.1021/acs.langmuir.7b03425
[17] WANG Q, LIU X, ZHANG L C, et al. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application[J]. Analyst, 2012, 137(22): 5392-5397. doi: 10.1039/c2an36059d
[18] RAY S C, SAHA A, JANA N R, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application[J]. Journal of Physical Chemistry C, 2009, 113(43): 18546-18551. doi: 10.1021/jp905912n
[19] PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738. doi: 10.1002/adma.200902825
[20] GUO J J, ZHOU M J, YANG C X. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions[J]. Scientific Reports, 2017, 7(1): 1-8. doi: 10.1038/s41598-016-0028-x
[21] CAMPOS B B, ABELLAN C, ZOUGAGH M, et al. Fluorescent chemosensor for pyridine based on N-doped carbon dots[J]. Journal of Colloid and Interface Science, 2015, 458: 209-216. doi: 10.1016/j.jcis.2015.07.053
[22] SAHU S, BEHERA B, MAITI T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70): 8835-8837. doi: 10.1039/c2cc33796g
[23] LI J, MA S, XIAO X, et al. The one-step preparation of green-emissioned carbon dots through hydrothermal route and its application[J]. Journal of Nanomaterials, 2019, 2019: 1-10.
[24] DASARY S S R, SINGH A K, SENAPATI D, et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene[J]. Journal of the American Chemical Society, 2009, 131(38): 13806-13812. doi: 10.1021/ja905134d
[25] WELLS K, BRADLEY D A. A review of X-ray explosives detection techniques for checked baggage[J]. Applied Radiation and Isotopes, 2012, 70(8): 1729-1746. doi: 10.1016/j.apradiso.2012.01.011
[26] ZER A, ERA E, APAK R. Selective spectrophotometric determination of trinitrotoluene, trinitrophenol, dinitrophenol and mononitrophenol[J]. Analytica Chimica Acta, 2004, 505(1): 83-93. doi: 10.1016/S0003-2670(03)00674-3
[27] BABAEE S, BEIRAGHI A. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples[J]. Analytica Chimica Acta, 2010, 662(1): 9-13. doi: 10.1016/j.aca.2009.12.032
[28] DUNBAR A D F, RICHARDSON T H, MCNAUGHTON A J, et al. Investigation of free base, Mg, Sn, and Zn substituted porphyrin LB films as gas sensors for organic analytes[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16646-16651. doi: 10.1021/jp0626059
[29] BARRON L, GILCHRIST E. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis[J]. Analytica Chimica Acta, 2014, 806: 27-54. doi: 10.1016/j.aca.2013.10.047
[30] CHEN P C, SUKCHAROENCHOKE S, RYU K, et al. 2, 4, 6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires[J]. Advanced Materials, 2010, 22(17): 1900-1904. doi: 10.1002/adma.200904005
[31] JU B, WANG Y, ZHANG Y M, et al. Photostable and low-toxic yellow-green carbon dots for highly selective detection of explosive 2, 4, 6-trinitrophenol based on the dual electron transfer mechanism[J]. ACS applied materials and interfaces, 2018, 10(15): 13040-13047. doi: 10.1021/acsami.8b02330
[32] MEHTA V N, CHETTIAR S S, BHAMORE J R, et al. Green synthetic approach for synthesis of fluorescent carbon dots for lisinopril drug delivery system and their confirmations in the cells[J]. Journal of Fluorescence, 2017, 27(1): 111-124. doi: 10.1007/s10895-016-1939-4
[33] DENG X, HUANG X M, WU D. Förster resonance-energy-transfer detection of 2, 4, 6-trinitrophenol using copper nanoclusters[J]. Analytical and Bioanalytical Chemistry, 2015, 407(16): 4607-4613. doi: 10.1007/s00216-015-8657-7
[34] CHEN T T, HU Y H, CEN Y, et al. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species[J]. Journal of the American Chemical Society, 2013, 135(31): 11595-11602. doi: 10.1021/ja4035939
[35] ZHANG P, YANG X X, WANG Y, et al. Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo[J]. Nanoscale, 2014, 6(4): 2261-2269. doi: 10.1039/C3NR05269A
[36] XIAO Z G, CHENG B X, WANG C X, et al. High stability and strong fluorescence of carbon nanodots as nanosensor for Hg2+ in environmental waters[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 57-63. doi: 10.1007/s00128-019-02753-4