[1] |
孙素云, 李宝磊, 孔德勇, 等. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032
SUN S Y, LI B L, KONG D Y, et al. Adsorption and transformation of chloropyridine: Research advances and challenges[J]. Environmental Engineering, 2022, 40(5): 227-236 (in Chinese). doi: 10.13205/j.hjgc.202205032
|
[2] |
孙素云. 二氯吡啶酸(CLP)胁迫下反硝化脱氮性能与微生物响应机制研究[D]. 天津: 天津城建大学, 2022.
SUN S Y. Study on denitrification and nitrogen removal performance and microbial response mechanism under the stress of dichloropyridine acid (CLP) [D]. Tianjin: Tianjin Chengjian University, 2022 (in Chinese).
|
[3] |
TIZAOUI C, MEZUGHI K, BICKLEY R. Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques[J]. Desalination, 2011, 273(1): 197-204. doi: 10.1016/j.desal.2010.11.036
|
[4] |
LOU Z M, SONG Y Q, SHAO B J, et al. Pre-electrochemical treatment combined with fixed bed biofilm reactor for pyridine wastewater treatment: From performance to microbial community analysis[J]. Bioresource Technology, 2021, 319: 124110. doi: 10.1016/j.biortech.2020.124110
|
[5] |
马淳安, 徐颖华, 朱英红, 等. 粗糙化银电极上3, 4, 5, 6-四氯吡啶甲酸的电催化还原[J]. 浙江工业大学学报, 2006, 5(5): 473-477.
MA C A, XU Y H, ZHU Y H, et al. Electrocatalytic reduction of 3, 4, 5, 6-tetrachloropicolinic acid on roughened silver electrode[J]. Journal of Zhejiang University of Technology, 2006, 5(5): 473-477 (in Chinese).
|
[6] |
XU Y H, DING X F, MA H X, et al. Selective hydrodechlorination of 3, 5, 6-trichloropicolinic acid at an activated silver cathode: Synthesis of 3, 5-dichloropicolinic acid[J]. Electrochimica Acta, 2015, 151: 284-288. doi: 10.1016/j.electacta.2014.11.039
|
[7] |
刘斌. 高含盐难降解工业园区污水的物化-生化耦合深度净化技术[D]. 沈阳: 辽宁大学, 2021.
LIU B. Advanced purification technology of physicochemical-biochemical coupling for wastewater from industrial park with high salinity and refractory degradation[D]. Shenyang: Liaoning University, 2021(in Chinese).
|
[8] |
罗开华. 生化法处理吡啶羧酸类废水的研究[D]. 湘潭: 湘潭大学, 2019.
LUO K H. Study on treatment of pyridine carboxylic acid wastewater by biochemical method[D]. Xiangtan: Xiangtan University, 2019(in Chinese).
|
[9] |
WESTPHAL K, SALIGER R, JÄGER D, et al. Degradation of clopyralid by the Fenton reaction[J]. Industrial & Engineering Chemistry Research, 2013, 52(39): 13924-13929.
|
[10] |
HE L, JI Y X, CHENG J, et al. Effect of pH and Cl− concentration on the electrochemical oxidation of pyridine in low-salinity reverse osmosis concentrate: Kinetics, mechanism, and toxicity assessment[J]. Chemical Engineering Journal, 2022, 449: 137669. doi: 10.1016/j.cej.2022.137669
|
[11] |
BARBOSA FERREIRA M, SOUZA F L, MUÑOZ -MORALES M, et al. Clopyralid degradation by AOPs enhanced with zero valent iron[J]. Journal of Hazardous Materials, 2020, 392: 122282. doi: 10.1016/j.jhazmat.2020.122282
|
[12] |
YANG X R, CAO X, ZHANG L, et al. Sulfate radical-based oxidation of the aminopyralid and picloram herbicides: The role of amino group on pyridine ring[J]. Journal of Hazardous Materials, 2021, 405: 124181. doi: 10.1016/j.jhazmat.2020.124181
|
[13] |
FERREIRA M B, MUÑOZ -MORALES M, SÁEZ C, et al. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis[J]. Science of the Total Environment, 2020, 713: 136647. doi: 10.1016/j.scitotenv.2020.136647
|
[14] |
MA C, FENG S, ZHOU J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue[J]. Applied Catalysis B:Environmental, 2019, 259: 118015. doi: 10.1016/j.apcatb.2019.118015
|
[15] |
ZHENG N C, HE X, HU R T, et al. In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes[J]. Applied Catalysis B:Environmental, 2022, 307: 121157. doi: 10.1016/j.apcatb.2022.121157
|
[16] |
ZHENG N C, HE X, HU R T, et al. Co-activation of persulfate by cation and anion from FeP for advanced oxidation processes[J]. Applied Catalysis B:Environmental, 2021, 298: 120505. doi: 10.1016/j.apcatb.2021.120505
|
[17] |
XIE Y, WANG X Q, TONG W H, et al. Fe xP/biochar composites induced oxygen-driven Fenton-like reaction for sulfamethoxazole removal: Performance and reaction mechanism[J]. Chemical Engineering Journal, 2020, 396: 125321. doi: 10.1016/j.cej.2020.125321
|
[18] |
ZHAO N, LIU K Y, HE C, et al. Singlet oxygen mediated the selective removal of oxytetracycline in C/Fe3C/Fe0 system as compared to chloramphenicol[J]. Environment International, 2020, 143: 105899. doi: 10.1016/j.envint.2020.105899
|
[19] |
QIAN L B, CHEN B L. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768.
|
[20] |
HU B W, AI Y J, JIN J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials[J]. Biochar, 2020, 2(1): 47-64. doi: 10.1007/s42773-020-00044-4
|
[21] |
RIZWAN M, ALI S, QAYYUM M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review[J]. Environmental Science and Pollution Research, 2016, 23(3): 2230-2248. doi: 10.1007/s11356-015-5697-7
|
[22] |
PEREIRA LOPES R, ASTRUC D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications[J]. Coordination Chemistry Reviews, 2021, 426: 213585. doi: 10.1016/j.ccr.2020.213585
|
[23] |
SEMERÁD J, ŠEVCŮ A, NGUYEN N H A, et al. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms[J]. Chemosphere, 2021, 281: 130915. doi: 10.1016/j.chemosphere.2021.130915
|
[24] |
王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2): 422-432.
WANG S C, SONG Y D, SUN Y K. Performance and mechanism of contaminants removal by carbon MaterialsModified zerovalent iron[J]. Progress in Chemistry, 2019, 31(2): 422-432 (in Chinese).
|
[25] |
LIU C C, YIN Z H, HU D, et al. Biochar derived from chicken manure as a green adsorbent for naphthalene removal[J]. Environmental Science and Pollution Research, 2021, 28(27): 36585-36597. doi: 10.1007/s11356-021-13286-x
|
[26] |
WANG Z Y, HAN L F, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures[J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042
|
[27] |
李尚真, 张治宏, 易晓辉, 等. 改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明B[J]. 环境化学, 2022, 41(3): 929-939. doi: 10.7524/j.issn.0254-6108.2021042106
LI S Z, ZHANG Z H, YI X H, et al. Removal of Rhodamine B by modified pig manure made biochar-activated persulfate(PS)[J]. Environmental Chemistry, 2022, 41(3): 929-939 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021042106
|
[28] |
LYKOUDI A, FRONTISTIS Z, VAKROS J, et al. Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator[J]. Journal of Environmental Management, 2020, 271: 111022. doi: 10.1016/j.jenvman.2020.111022
|
[29] |
KE Y X, CUI S, FU Q, et al. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar[J]. Chemosphere, 2022, 296: 134051. doi: 10.1016/j.chemosphere.2022.134051
|
[30] |
SAMOLADA M C, ZABANIOTOU A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Management, 2014, 34(2): 411-420. doi: 10.1016/j.wasman.2013.11.003
|
[31] |
LIU H D, XU G R, LI G B. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. doi: 10.1016/j.jcis.2020.12.014
|
[32] |
CHAGAS J K M, FIGUEIREDO C C, Da SILVA J, et al. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment[J]. Journal of Environmental Management, 2021, 279: 111824. doi: 10.1016/j.jenvman.2020.111824
|
[33] |
LI Y, HAN D H, ARAI Y, et al. Kinetics and mechanisms of debromination of tetrabromobisphenol A by Cu coated nano zerovalent iron[J]. Chemical Engineering Journal, 2019, 373: 95-103. doi: 10.1016/j.cej.2019.04.182
|
[34] |
DONADELLI J A, CARLOS L, ARQUES A, et al. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: PH-dependent shift in the contributions of reductive and oxidative transformation pathways[J]. Applied Catalysis B:Environmental, 2018, 231: 51-61. doi: 10.1016/j.apcatb.2018.02.057
|
[35] |
DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods , 2016, 109: 21-30. doi: 10.1016/j.ymeth.2016.05.013
|
[36] |
HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
|