-
氯代吡啶是医药、农药等精细化工产品的常见结构或中间体,具有广泛的应用. 比如3, 6-二氯吡啶-2-羧酸(CLP)是一种用于控制一年或多年生阔叶杂草的常见氯代吡啶除草剂. CLP能够穿透土壤导致地下和地表水污染,在水中的溶解度高达
1000 mg·L−1 [1]. 据报道,北美地区由融雪和降雨径流补给的水库中CLP浓度高达1050 ng·L−1 [2]. CLP生产过程产生的废水含有多种具有高毒性和致癌作用的氨基和氯取代的吡啶类物质[3 − 4]. 其中,3,4,5,6-四氯吡啶-2-羧酸(TCPA)是采用电化学还原法制备CLP的重要原材料和中间体 [5 − 6]. TCPA含有吡啶环和4个氯代基团,具有更强稳定性和高毒性,属于典型的难降解有机污染物,可以长期存在于水体中,并导致人体多项功能紊乱[7- 8]. 由于较高的生物毒性和稳定性,氯代吡啶废水进入生物处理系统前必须进行预处理.高级氧化技术(AOPs),如Fenton氧化[9]、光催化[3]、电化学氧化[10 − 11]和过硫酸盐氧化[12]是氯代吡啶类废水预处理的常用方法. 但是,这些技术具有能耗高、氧化剂投入多以及污泥产生量高等缺点[11]. 研究一种低成本且能够高效去除水环境中氯吡啶类污染物的催化剂至关重要.
零价铁(ZVI)的比表面积大、还原性强,已有研究将其用于吡啶类废水的预处理[11, 13]. 但是单独ZVI处理效果较差且产生污泥量高. 研究表明,磷化铁(FexP)和碳化铁比ZVI具有更高的活性和稳定性,可以高效活化溶解氧,产生羟基自由基、单线态氧和超氧阴离子自由基等多种活性氧物质,从而促进污染物的氧化降解[14 − 18]. 近年来,生物炭(BC)是污染修复领域的热点材料之一,它具有原材料廉价易得、表面积大、官能团丰富等优点[19 − 21]. 生物质炭可吸附去除污染物,还可以作为铁基纳米材料的载体[22],将ZVI等铁基材料负载到生物炭中能提高ZVI的反应活性和稳定性,增强污染物去除效果[23, 24].
生物质炭的原材料种类丰富,不同种类也影响生物质炭的结构及性能. 我国每年产生牲畜粪便高达几十亿t,所含的有害物质可造成地表水和地下水的污染,将禽畜粪便热解制备成生物炭对解决能源危机和环境污染具有重要意义[25 − 27]. 近年来我国咖啡市场逐年增长,预计每年可产生80多万t的咖啡渣,利用咖啡渣合成生物炭用于污染物处理备受关注[28 − 29]. 随着我国城市化进程快速推进,每年产生大量的活性污泥,污泥中通常含有人类致病菌、重金属等有害物质,如果不处理将对环境造成二次污染并威胁人类健康[30]。污泥中含有大量有机质,制备成生物质炭是污泥资源化的重要处理技术[31 − 32].
本研究以咖啡渣、鸡粪和活性污泥等3种不同类型的生物质为原材料,合成了生物质炭负载的磷化铁/零价铁/碳化铁复合材料. 以制备材料为催化剂,对水中TCPA的预处理,确定不同种类生物质对生物炭复合材料的影响,获得了一种对水环境中难降解污染物具有强去除能力的水质净化材料.
不同碳源的生物质炭-磷化铁/零价铁的制备及对水中3,4,5,6-四氯吡啶-2-羧酸的去除
Preparation of biochar-iron phosphide/zero-valent iron with different carbon sources and removal of 3, 4, 5, 6-Tetrachloropyridine-2-carboxylic acid from water solution
-
摘要: 改性生物炭材料在环境污染物去除中的应用越来越广泛. 本文以鸡粪(CM)、咖啡渣(CG)、活性污泥(SL)等3种废弃生物质为碳源,制备了3种生物质炭-磷化铁/零价铁复合材料(BC-FexP/Fe). 这些材料主要由生物质炭、磷酸铁、磷化铁、零价铁或碳化铁及氧化铁组成. 用于降解水中的3,4,5,6-四氯吡啶-2-羧酸(TCPA)时,以活性污泥为碳源的SL-FexP/Fe材料对TCPA的去除效果明显优于以鸡粪为碳源的CM-FexP/Fe和以咖啡为碳源的CG-FexP/Fe材料,而且SL-FexP/Fe对TCPA的降解受pH影响较小. 在中性pH反应6 h后,CM-FexP/Fe、CG-FexP/Fe和SL-FexP/Fe对10 mg·L−1的TCPA的降解率分别为90.1%、71.1%和100%,矿化率分别为33.25%、22.61%和64.27%. 掩蔽实验和电子自旋共振(ESR)结果表明,SL-FexP/Fe体系存在多种活性氧物质. 使用前后材料的X射线晶体衍射和X射线光电子能谱分析,材料中的FexP、Fe3C、Fe和氮掺杂生物质炭均在有机污染物的降解过程中发挥了作用.
-
关键词:
- 废弃生物质 /
- 改性生物炭 /
- 复合材料 /
- 3,4,5,6-四氯吡啶-2-羧酸
Abstract: Modified biochar materials are more and more widely used in the removal of environmental pollutants. In this study, several biochar-iron phosphide/zero-valent iron composites (BC-FexP/Fe) were prepared with chicken manure (CM), coffee grounds (CG) or activated sludge (SL) as carbon source. These materials were mainly composed of biochar, iron phosphate, zero-valent iron or iron carbide and iron oxide. When used for the degradation of 3,4,5,6-tetrachloropyridine-2-carboxylic acid (TCPA) from water, the removal efficiency of TCPA by SL-FexP/Fe with activated sludge as carbon source was better than that by CM-FexP/Fe with chicken manure as carbon source and CG-FexP/Fe with coffee ground as carbon source. Furthermore, the degradation of TCPA by SL-FexP/Fe was less affected by pH than those by CM-FexP/Fe and CG-FexP/Fe. At neutral pH, the degradation percentage of TCPA (10 mg·L−1) by CM-FexP/Fe, CG-FexP/Fe and SL-FexP/Fe were 90.1%, 71.1% and 100%, and the mineralization efficiency was 33.25%, 22.61% and 64.27%, respectively within 6h. The masking experiments and electron spin resonance (ESR) results showed the coexistence of various active oxygen species in SL-FexP/Fe system. X-ray diffraction and X-ray photoelectron spectroscopy analysis of the fresh and used materials suggested that FexP, Fe3C, Fe and nitrogen-doped biochar in the materials all played roles during the degradation of organic pollutants. -
-
[1] 孙素云, 李宝磊, 孔德勇, 等. 氯代吡啶类污染物吸附与转化技术研究进展及挑战[J]. 环境工程, 2022, 40(5): 227-236. doi: 10.13205/j.hjgc.202205032 SUN S Y, LI B L, KONG D Y, et al. Adsorption and transformation of chloropyridine: Research advances and challenges[J]. Environmental Engineering, 2022, 40(5): 227-236 (in Chinese). doi: 10.13205/j.hjgc.202205032
[2] 孙素云. 二氯吡啶酸(CLP)胁迫下反硝化脱氮性能与微生物响应机制研究[D]. 天津: 天津城建大学, 2022. SUN S Y. Study on denitrification and nitrogen removal performance and microbial response mechanism under the stress of dichloropyridine acid (CLP) [D]. Tianjin: Tianjin Chengjian University, 2022 (in Chinese).
[3] TIZAOUI C, MEZUGHI K, BICKLEY R. Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques[J]. Desalination, 2011, 273(1): 197-204. doi: 10.1016/j.desal.2010.11.036 [4] LOU Z M, SONG Y Q, SHAO B J, et al. Pre-electrochemical treatment combined with fixed bed biofilm reactor for pyridine wastewater treatment: From performance to microbial community analysis[J]. Bioresource Technology, 2021, 319: 124110. doi: 10.1016/j.biortech.2020.124110 [5] 马淳安, 徐颖华, 朱英红, 等. 粗糙化银电极上3, 4, 5, 6-四氯吡啶甲酸的电催化还原[J]. 浙江工业大学学报, 2006, 5(5): 473-477. MA C A, XU Y H, ZHU Y H, et al. Electrocatalytic reduction of 3, 4, 5, 6-tetrachloropicolinic acid on roughened silver electrode[J]. Journal of Zhejiang University of Technology, 2006, 5(5): 473-477 (in Chinese).
[6] XU Y H, DING X F, MA H X, et al. Selective hydrodechlorination of 3, 5, 6-trichloropicolinic acid at an activated silver cathode: Synthesis of 3, 5-dichloropicolinic acid[J]. Electrochimica Acta, 2015, 151: 284-288. doi: 10.1016/j.electacta.2014.11.039 [7] 刘斌. 高含盐难降解工业园区污水的物化-生化耦合深度净化技术[D]. 沈阳: 辽宁大学, 2021. LIU B. Advanced purification technology of physicochemical-biochemical coupling for wastewater from industrial park with high salinity and refractory degradation[D]. Shenyang: Liaoning University, 2021(in Chinese).
[8] 罗开华. 生化法处理吡啶羧酸类废水的研究[D]. 湘潭: 湘潭大学, 2019. LUO K H. Study on treatment of pyridine carboxylic acid wastewater by biochemical method[D]. Xiangtan: Xiangtan University, 2019(in Chinese).
[9] WESTPHAL K, SALIGER R, JÄGER D, et al. Degradation of clopyralid by the Fenton reaction[J]. Industrial & Engineering Chemistry Research, 2013, 52(39): 13924-13929. [10] HE L, JI Y X, CHENG J, et al. Effect of pH and Cl− concentration on the electrochemical oxidation of pyridine in low-salinity reverse osmosis concentrate: Kinetics, mechanism, and toxicity assessment[J]. Chemical Engineering Journal, 2022, 449: 137669. doi: 10.1016/j.cej.2022.137669 [11] BARBOSA FERREIRA M, SOUZA F L, MUÑOZ -MORALES M, et al. Clopyralid degradation by AOPs enhanced with zero valent iron[J]. Journal of Hazardous Materials, 2020, 392: 122282. doi: 10.1016/j.jhazmat.2020.122282 [12] YANG X R, CAO X, ZHANG L, et al. Sulfate radical-based oxidation of the aminopyralid and picloram herbicides: The role of amino group on pyridine ring[J]. Journal of Hazardous Materials, 2021, 405: 124181. doi: 10.1016/j.jhazmat.2020.124181 [13] FERREIRA M B, MUÑOZ -MORALES M, SÁEZ C, et al. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis[J]. Science of the Total Environment, 2020, 713: 136647. doi: 10.1016/j.scitotenv.2020.136647 [14] MA C, FENG S, ZHOU J M, et al. Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue[J]. Applied Catalysis B:Environmental, 2019, 259: 118015. doi: 10.1016/j.apcatb.2019.118015 [15] ZHENG N C, HE X, HU R T, et al. In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes[J]. Applied Catalysis B:Environmental, 2022, 307: 121157. doi: 10.1016/j.apcatb.2022.121157 [16] ZHENG N C, HE X, HU R T, et al. Co-activation of persulfate by cation and anion from FeP for advanced oxidation processes[J]. Applied Catalysis B:Environmental, 2021, 298: 120505. doi: 10.1016/j.apcatb.2021.120505 [17] XIE Y, WANG X Q, TONG W H, et al. Fe xP/biochar composites induced oxygen-driven Fenton-like reaction for sulfamethoxazole removal: Performance and reaction mechanism[J]. Chemical Engineering Journal, 2020, 396: 125321. doi: 10.1016/j.cej.2020.125321 [18] ZHAO N, LIU K Y, HE C, et al. Singlet oxygen mediated the selective removal of oxytetracycline in C/Fe3C/Fe0 system as compared to chloramphenicol[J]. Environment International, 2020, 143: 105899. doi: 10.1016/j.envint.2020.105899 [19] QIAN L B, CHEN B L. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768. [20] HU B W, AI Y J, JIN J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials[J]. Biochar, 2020, 2(1): 47-64. doi: 10.1007/s42773-020-00044-4 [21] RIZWAN M, ALI S, QAYYUM M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review[J]. Environmental Science and Pollution Research, 2016, 23(3): 2230-2248. doi: 10.1007/s11356-015-5697-7 [22] PEREIRA LOPES R, ASTRUC D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications[J]. Coordination Chemistry Reviews, 2021, 426: 213585. doi: 10.1016/j.ccr.2020.213585 [23] SEMERÁD J, ŠEVCŮ A, NGUYEN N H A, et al. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms[J]. Chemosphere, 2021, 281: 130915. doi: 10.1016/j.chemosphere.2021.130915 [24] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2): 422-432. WANG S C, SONG Y D, SUN Y K. Performance and mechanism of contaminants removal by carbon MaterialsModified zerovalent iron[J]. Progress in Chemistry, 2019, 31(2): 422-432 (in Chinese).
[25] LIU C C, YIN Z H, HU D, et al. Biochar derived from chicken manure as a green adsorbent for naphthalene removal[J]. Environmental Science and Pollution Research, 2021, 28(27): 36585-36597. doi: 10.1007/s11356-021-13286-x [26] WANG Z Y, HAN L F, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures[J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042 [27] 李尚真, 张治宏, 易晓辉, 等. 改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明B[J]. 环境化学, 2022, 41(3): 929-939. doi: 10.7524/j.issn.0254-6108.2021042106 LI S Z, ZHANG Z H, YI X H, et al. Removal of Rhodamine B by modified pig manure made biochar-activated persulfate(PS)[J]. Environmental Chemistry, 2022, 41(3): 929-939 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021042106
[28] LYKOUDI A, FRONTISTIS Z, VAKROS J, et al. Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator[J]. Journal of Environmental Management, 2020, 271: 111022. doi: 10.1016/j.jenvman.2020.111022 [29] KE Y X, CUI S, FU Q, et al. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd2+ and Zn2+ by coffee grounds biochar[J]. Chemosphere, 2022, 296: 134051. doi: 10.1016/j.chemosphere.2022.134051 [30] SAMOLADA M C, ZABANIOTOU A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Management, 2014, 34(2): 411-420. doi: 10.1016/j.wasman.2013.11.003 [31] LIU H D, XU G R, LI G B. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. doi: 10.1016/j.jcis.2020.12.014 [32] CHAGAS J K M, FIGUEIREDO C C, Da SILVA J, et al. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment[J]. Journal of Environmental Management, 2021, 279: 111824. doi: 10.1016/j.jenvman.2020.111824 [33] LI Y, HAN D H, ARAI Y, et al. Kinetics and mechanisms of debromination of tetrabromobisphenol A by Cu coated nano zerovalent iron[J]. Chemical Engineering Journal, 2019, 373: 95-103. doi: 10.1016/j.cej.2019.04.182 [34] DONADELLI J A, CARLOS L, ARQUES A, et al. Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: PH-dependent shift in the contributions of reductive and oxidative transformation pathways[J]. Applied Catalysis B:Environmental, 2018, 231: 51-61. doi: 10.1016/j.apcatb.2018.02.057 [35] DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods , 2016, 109: 21-30. doi: 10.1016/j.ymeth.2016.05.013 [36] HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.