[1] WANG Z, LUO P P, ZHA X B, et al. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil[J]. Journal of Cleaner Production, 2022, 379: 134043. doi: 10.1016/j.jclepro.2022.134043
[2] PENG J Y, ZHANG S, HAN Y Y, et al. Soil heavy metal pollution of industrial legacies in China and health risk assessment[J]. Science of the Total Environment, 2022, 816: 151632. doi: 10.1016/j.scitotenv.2021.151632
[3] LI Y, ZHOU S L, JIA Z Y, et al. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution, 2021, 284: 117465. doi: 10.1016/j.envpol.2021.117465
[4] KAEWNOK N, SIRIRAK J, JUNGSUTTIWONG S, et al. Detection of hazardous mercury ion using [5]helicene-based fluorescence probe with “TurnON” sensing response for practical applications[J]. Journal of Hazardous Materials, 2021, 418: 126242. doi: 10.1016/j.jhazmat.2021.126242
[5] NAFI A W, TASEIDIFAR M. Removal of hazardous ions from aqueous solutions: Current methods, with a focus on green ion flotation[J]. Journal of Environmental Management, 2022, 319: 115666. doi: 10.1016/j.jenvman.2022.115666
[6] WANG Y, ZHANG L, HAN X Y, et al. Fluorescent probe for mercury ion imaging analysis: Strategies and applications[J]. Chemical Engineering Journal, 2021, 406: 127166. doi: 10.1016/j.cej.2020.127166
[7] YUAN Z H, YANG Y S, LV P C, et al. Recent progress in small-molecule fluorescent probes for detecting mercury ions[J]. Critical Reviews in Analytical Chemistry, 2022, 52(2): 250-274. doi: 10.1080/10408347.2020.1797466
[8] TUNSU C, WICKMAN B. Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum[J]. Nature Communications, 2018, 9: 4876. doi: 10.1038/s41467-018-07300-z
[9] HASAN A, NANAKALI N M Q, SALIHI A, et al. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods[J]. Talanta, 2020, 215: 120939. doi: 10.1016/j.talanta.2020.120939
[10] SU M J, LIU C Y, ZHANG Y, et al. Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection[J]. Analytica Chimica Acta, 2022, 1230: 340337. doi: 10.1016/j.aca.2022.340337
[11] 管怡晗, 黎广进, 刘盛华, 等. 汞离子比色型荧光探针的合成与性质[J]. 环境化学, 2021, 40(8): 2544-2550. doi: 10.7524/j.issn.0254-6108.2020041201 GUAN Y H, LI G J, LIU S H, et al. Synthesis and properties of colorimetric fluorescent probe for mercury ions[J]. Environmental Chemistry, 2021, 40(8): 2544-2550 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020041201
[12] CHEN H J, LI X W, GAO P, et al. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips[J]. Journal of Molecular Structure, 2022, 1262: 133015. doi: 10.1016/j.molstruc.2022.133015
[13] WANG P, XUE S R, CHEN B, et al. A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect[J]. Analytical and Bioanalytical Chemistry, 2022, 414(16): 4717-4726. doi: 10.1007/s00216-022-04094-4
[14] MENG A L, ZHANG Y, WANG X H, et al. Fluorescence probe based on boron-doped carbon quantum dots for high selectivity “on-off-on” mercury ion sensing and cell imaging[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 648: 129150. doi: 10.1016/j.colsurfa.2022.129150
[15] LI X Q, CHU D D, WANG J, et al. A dicyanoisophorone-based ICT fluorescent probe for the detection of Hg2+ in water/food sample analysis and live cell imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2023, 295: 122628. doi: 10.1016/j.saa.2023.122628
[16] CUI W L, ZHANG Z H, WANG L, et al. A novel and stable fluorescent probe for tracking Hg2+ with large Stokes shift and its application in cell imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 267: 120516. doi: 10.1016/j.saa.2021.120516
[17] WU Y M, WANG Z L, YANG Y Q. A novel flavonol-based fluorescent probe for rapid detection of Hg2+ and its multi-functional applications[J]. Dyes and Pigments, 2023, 216: 111353. doi: 10.1016/j.dyepig.2023.111353
[18] 孙艳丽, 王芹, 郝亮, 等. 荧光恢复型半花菁荧光探针的构建及其在水样中汞离子检测中的应用[J]. 环境化学, 2022, 41(11): 3756-3765. doi: 10.7524/j.issn.0254-6108.2022042004 SUN Y L, WANG Q, HAO L, et al. Construction of a merocyanine-based turn-on fluorescent probe and its application in the detection of mercury ion in water sample[J]. Environmental Chemistry, 2022, 41(11): 3756-3765 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022042004
[19] 李淑雅, 魏超, 赵晗, 等. 检测汞离子的比色-荧光双通道探针的设计合成及应用[J]. 分析化学, 2023, 51(2): 204-214. doi: 10.19756/j.issn.0253-3820.221199 LI S Y, WEI C, ZHAO H, et al. Synthesis and application of colorimetric and fluorescent dual mode probe for detection of mercury ion[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 204-214 (in Chinese). doi: 10.19756/j.issn.0253-3820.221199
[20] WANG L H, CHEN H, ZHANG N N, et al. Reaction-based two novel fluorescent probes for Hg2+ detection using benzothiazole derivatives via ESIPT mechanism in aqueous solution and serum[J]. Tetrahedron Letters, 2021, 64: 152735. doi: 10.1016/j.tetlet.2020.152735
[21] JIANG L, ZHENG T, XU Z X, et al. New NIR spectroscopic probe with a large Stokes shift for Hg2+ and Ag+ detection and living cells imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 271: 120916. doi: 10.1016/j.saa.2022.120916
[22] WONG R C H, LO P C, NG D K P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers[J]. Coordination Chemistry Reviews, 2019, 379: 30-46. doi: 10.1016/j.ccr.2017.10.006
[23] LIU H, YIN J J, XING E Y, et al. Halogenated cyanine dyes for synergistic photodynamic and photothermal therapy[J]. Dyes and Pigments, 2021, 190: 109327. doi: 10.1016/j.dyepig.2021.109327
[24] CHEN H W, XIA H C, HAKEIM O A, et al. Phenothiazine and semi-cyanine based colorimetric and fluorescent probes for detection of sulfites in solutions and in living cells[J]. RSC Advances, 2021, 11(55): 34643-34651. doi: 10.1039/D1RA06868G
[25] ZHOU Z, XIA X F, LI Z, et al. An activatable near-infrared fluorescent probe for tracking nitroxyl in vitro and in vivo[J]. Dyes and Pigments, 2023, 209: 110945. doi: 10.1016/j.dyepig.2022.110945