[1] |
TIAN Y J, ZOU J R, FENG L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs[J]. Water Research, 2019, 149: 35-41. doi: 10.1016/j.watres.2018.10.076
|
[2] |
陈小平, 王萌, 杨长明, 等. 四环素类抗生素在我国水环境污染现状及其对水生生物的毒性研究进展[J]. 应用化工, 2021, 50(10): 2780-2785. doi: 10.3969/j.issn.1671-3206.2021.10.033
|
[3] |
INYINBOR A A, BELLO O S, FADIJI A E, et al. Threats from antibiotics: A serious environmental concern[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 784-793. doi: 10.1016/j.jece.2017.12.056
|
[4] |
GONG H, CHU W. Photodegradation of sulfamethoxazole with a recyclable catalyst[J]. Industrial & Engineering Chemistry Research, 2015, 54(51): 12763-12769.
|
[5] |
ALTURKI A A, MCDONALD J A, KHAN S J, et al. Removal of trace organic contaminants by the forward osmosis process[J]. Separation and Purification Technology, 2013, 103: 258-266. doi: 10.1016/j.seppur.2012.10.036
|
[6] |
NGHIEM L D, COLEMAN P J, ESPENDILLER C. Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants[J]. Desalination, 2010, 250(2): 682-687. doi: 10.1016/j.desal.2009.03.025
|
[7] |
MANGLA D, ANNU, SHARMA A, et al. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective[J]. Journal of Hazardous Materials, 2022, 425: 127946. doi: 10.1016/j.jhazmat.2021.127946
|
[8] |
CHOWDHURY A, KUMARI S, KHAN A A, et al. Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: Kinetics and isotherms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 611: 125868. doi: 10.1016/j.colsurfa.2020.125868
|
[9] |
CHENG J, GU J J, TAO W, et al. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water[J]. Bioresource Technology, 2019, 294: 122149. doi: 10.1016/j.biortech.2019.122149
|
[10] |
AWAD A M, JALAB R, BENAMOR A, et al. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview[J]. Journal of Molecular Liquids, 2020, 301: 112335. doi: 10.1016/j.molliq.2019.112335
|
[11] |
SHARMA A, KUMAR N, MUDHOO A, et al. Phytobiomass-based nanoadsorbents for sequestration of aquatic emerging contaminants: An Overview[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109506. doi: 10.1016/j.jece.2023.109506
|
[12] |
MA P Y, YAO S W, WANG Z Q, et al. Preparation of nitrogen-doped hierarchical porous carbon aerogels from agricultural wastes for efficient pollution adsorption[J]. Separation and Purification Technology, 2023, 311: 123250. doi: 10.1016/j.seppur.2023.123250
|
[13] |
ZHANG L L, YAO L, YE L F, et al. Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104562. doi: 10.1016/j.jece.2020.104562
|
[14] |
CHEN Y P, ZHENG C H, HUANG Y Y, et al. Removal of chlortetracycline from water using spent tea leaves-based biochar as adsorption-enhanced persulfate activator[J]. Chemosphere, 2022, 286(2): 131770.
|
[15] |
WANG B Z, BAI W J, WANG G X, et al. CoO modified porous boron nitride fibers for the adsorption and removal of chlortetracycline from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 632: 127749. doi: 10.1016/j.colsurfa.2021.127749
|
[16] |
TAHERAN M, NAGHDI M, BRAR S K, et al. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar[J]. Science of the Total Environment, 2016, 571: 772-777. doi: 10.1016/j.scitotenv.2016.07.050
|
[17] |
ASLAN S, ŞIRAZI M. Adsorption of sulfonamide antibiotic onto activated carbon prepared from an agro-industrial by-product as low-cost adsorbent: Equilibrium, thermodynamic, and kinetic studies[J]. Water, Air, & Soil Pollution, 2020, 231(5) : 222-241.
|
[18] |
XU Q, ZHOU Q, PAN M M, et al. Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation[J]. Chemical Engineering Journal, 2020, 382: 122705. doi: 10.1016/j.cej.2019.122705
|
[19] |
MOHAMAD K, SAAD J, SAJAB S, et al. Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH[J]. Sains Malaysiana, 2020, 49(11): 2723-2736.
|
[20] |
PEZOTI O, CAZETTA A L, SOUZA I P. A. F. , et al. Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L. )[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4401-4407.
|
[21] |
HU Q L, LIU H Y, ZHANG Z Y, et al. Nitrate removal from aqueous solution using polyaniline modified activated carbon: Optimization and characterization[J]. Journal of Molecular Liquids, 2020, 309: 113057. doi: 10.1016/j.molliq.2020.113057
|
[22] |
XIANG Y J, XU Z Y, WEI Y Y, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138.
|
[23] |
HAMADEEN H M, ELKHATIB E A. New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms[J]. Environmental Research, 2022, 210: 112929. doi: 10.1016/j.envres.2022.112929
|
[24] |
ZHU X X, LI C Y, LI J F, et al. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2018, 263: 475-482. doi: 10.1016/j.biortech.2018.05.041
|
[25] |
ÁLVAREZ-TORRELLAS S, RODRÍGUEZ A, OVEJERO G, et al. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials[J]. Chemical Engineering Journal, 2016, 283: 936-947. doi: 10.1016/j.cej.2015.08.023
|