[1] |
贾金生, 李文超, 湛正刚, 等. 水库大坝智慧化建设与高质量发展[M]. 北京: 中国建筑工业出版社, 2022.
JIA J S, LI W C, ZHAN Z G, et al. Intelligent construction and high-quality development of reservoir dams[M]. Beijing: China Architecture & Building Press, 2022(in Chinese).
|
[2] |
高园园, 郭悦, 段茂庆, 等. 永定河“引黄济京”生态补水对流域地表水环境的影响[J]. 江西科学, 2022, 40(6): 1102-1107.
GAO Y Y, GUO Y, DUAN M Q, et al. Influence of ecological water supplement from the Yellow River to Beijing on surface water environment in Yongding River Basin[J]. Jiangxi Science, 2022, 40(6): 1102-1107 (in Chinese).
|
[3] |
WANG Y Z, ZHANG S L, CUI W Y, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River Basin, China: Seasonal distribution, source apportionment, and potential risk assessment[J]. Science of the Total Environment, 2018, 618: 419-429. doi: 10.1016/j.scitotenv.2017.11.066
|
[4] |
ZHANG J W, GE H, SHI J H, et al. A tiered probabilistic approach to assess antibiotic ecological and resistance development risks in the fresh surface waters of China[J]. Ecotoxicology and Environmental Safety, 2022, 243: 114018. doi: 10.1016/j.ecoenv.2022.114018
|
[5] |
SAEED T, PAUL B, AFRIN R, et al. Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load[J]. Chemical Engineering Journal, 2016, 287: 62-73. doi: 10.1016/j.cej.2015.10.118
|
[6] |
ZHU L Q, ZHANG H K, LI Y P, et al. Long-term variation characteristics of nutrients in the water and sediments of a surface flow constructed wetland with micro-polluted water sources[J]. Ecological Engineering, 2023, 187: 106848. doi: 10.1016/j.ecoleng.2022.106848
|
[7] |
田景宏, 黄柄彬. 人工湿地处理永定河微污染河水试验研究[J]. 水处理技术, 2009, 35(6): 82-86.
TIAN J H, HUANG B B. Study on the efficiency of different constructed wetland process for micro-polluted river water treatment[J]. Technology of Water Treatment, 2009, 35(6): 82-86 (in Chinese).
|
[8] |
高志永, 汤双宇, 宋洪涛, 等. 北方多级复合人工湿地对微污染河水的净化效率: 以廊坊龙河湿地为例[J]. 湿地科学与管理, 2022, 18(3): 4-10. doi: 10.3969/j.issn.1673-3290.2022.03.01
GAO Z Y, TANG S Y, SONG H T, et al. The efficiency of purifying slightly polluted river water by multi-stage composite constructed wetland in North China: A case study of Longhe wetland in Langfang[J]. Wetland Science & Management, 2022, 18(3): 4-10 (in Chinese). doi: 10.3969/j.issn.1673-3290.2022.03.01
|
[9] |
WU H M, ZHANG J, LI P Z, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in Northern China[J]. Ecological Engineering, 2011, 37(4): 560-568. doi: 10.1016/j.ecoleng.2010.11.020
|
[10] |
徐嫚嫚, 石路路, 张琴, 等. 四环素类抗生素在焦炭填料人工湿地中的去除性能研究[J]. 水处理技术, 2022, 48(12): 119-124.
XU M M , SHI L L, ZHANG Q, et al. Study on the removal performance of tetracycline antibiotics in coke-packed constructed wetland[J]. Technology of Water Treatment, 2022, 48(12): 119-124 (in Chinese).
|
[11] |
李超予, 杨怡潇, 张宁, 等. 两种典型PPCPs在潜流人工湿地中的季节性去除效果及降解产物[J]. 环境科学, 2021, 42(2): 842-849.
LI C Y, YANG Y X, ZHANG N, et al. Seasonal removal efficiency and degradation products of two typical PPCPs in subsurface flow constructed wetlands[J]. Environmental Science, 2021, 42(2): 842-849 (in Chinese).
|
[12] |
张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报, 2016, 25(2): 292-299.
ZHANG Y Y, CAO C L, REN L J, et al. Research on pollutants removal effect of different combined substrate under different hydraulic retention time in vertical flow constructed wetlands[J]. Ecology and Environmental Sciences, 2016, 25(2): 292-299 (in Chinese).
|
[13] |
肖其亮, 熊丽萍, 彭华, 等. 不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究, 2022, 35(5): 1277-1287.
XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combinations[J]. Research of Environmental Sciences, 2022, 35(5): 1277-1287 (in Chinese).
|
[14] |
祝志超, 缪恒锋, 崔健, 等. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036.
ZHU Z C, MIAO H F, CUI J, et al. Advanced treatment performance of combined constructed wetland system on secondary effluent from wastewater treatment plant[J]. Research of Environmental Sciences, 2018, 31(12): 2028-2036 (in Chinese).
|
[15] |
CUI E P, ZHOU Z C, GAO F, et al. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review[J]. Science of the Total Environment, 2023, 859: 160257. doi: 10.1016/j.scitotenv.2022.160257
|
[16] |
孙井梅, 李阳, 李志杰, 等. 垂直潜流人工湿地净化北方微污染水体试验研究[J]. 生态环境学报, 2012, 21(10): 1711-1716.
SUN J M, LI Y, LI Z J, et al. Experimental study on purification of micro-polluted water in northern area by vertical flow constructed wetland[J]. Ecology and Environmental Sciences, 2012, 21(10): 1711-1716 (in Chinese).
|
[17] |
廖雪珂, 严晗璐, 王智源, 等. 低温季节水平潜流和垂直潜流人工湿地尾水深度处理中试[J]. 环境科学, 2020, 41(12): 5509-5517.
LIAO X K, YAN H L, WANG Z Y, et al. Advanced treatment of tail water using pilot-scale horizontal and vertical subsurface flow constructed wetlands in low-temperature seasons[J]. Environmental Science, 2020, 41(12): 5509-5517 (in Chinese).
|
[18] |
ÁVILA C, GARCÍA-GALÁN M J, BORREGO C M, et al. New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands[J]. Science of the Total Environment, 2021, 755: 142554. doi: 10.1016/j.scitotenv.2020.142554
|
[19] |
DU R J, ZHANG Q X, LERESCHE F, et al. The determination and prediction of the apparent reaction rates between excited triplet-state DOM and selected PPCPs[J]. Science of the Total Environment, 2023, 881: 163117. doi: 10.1016/j.scitotenv.2023.163117
|
[20] |
GUAN W, YIN M, HE T, et al. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J]. Environmental Science and Pollution Research, 2015, 22(20): 16202-16209. doi: 10.1007/s11356-015-5160-9
|
[21] |
YAO D D, HU X J, SHEN X T, et al. Can calcium-based constructed wetlands improve fluoride removal performance?[J]. Chemical Engineering Journal, 2022, 450: 138314. doi: 10.1016/j.cej.2022.138314
|
[22] |
MATAMOROS V, ARIAS C, BRIX H, et al. Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products[J]. Water Research, 2009, 43(1): 55-62. doi: 10.1016/j.watres.2008.10.005
|
[23] |
MATAMOROS V, BAYONA J M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands[J]. Environmental Science & Technology, 2006, 40(18): 5811-5816.
|
[24] |
REYES-CONTRERAS C, MATAMOROS V, RUIZ I, et al. Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater[J]. Chemosphere, 2011, 84(9): 1200-1207. doi: 10.1016/j.chemosphere.2011.06.003
|
[25] |
LÓPEZ D, SEPÚLVEDA-MARDONES M, RUIZ-TAGLE N, et al. Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons[J]. Science of the Total Environment, 2019, 648: 1042-1051. doi: 10.1016/j.scitotenv.2018.08.186
|
[26] |
彭广生, 陆燕青, 曾鸿鹄, 等. 人工湿地β-六六六去除效果及细菌群落特征分析[J]. 水处理技术, 2020, 46(8): 34-38.
PENG G S, LU Y Q, ZENG H H, et al. Purification effect of β-HCH by vertical flow constructed wetlands with different plant[J]. Technology of Water Treatment, 2020, 46(8): 34-38 (in Chinese).
|
[27] |
李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38(9): 3713-3720.
LI Z L, DING Y L, BAI S Y, et al. Correlations between substrate structure and microbial community in subsurface flow constructed wetlands[J]. Environmental Science, 2017, 38(9): 3713-3720 (in Chinese).
|
[28] |
ARIESYADY H D, ITO T, OKABE S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research, 2007, 41(7): 1554-1568. doi: 10.1016/j.watres.2006.12.036
|
[29] |
侯丽媛, 江经纬, 蒋建东, 等. 假黄单胞菌株J1的筛选及木质纤维素降解基因的生物信息学分析[J]. 南京农业大学学报, 2016, 39(4): 573-581.
HOU L Y, JIANG J W, JIANG J D, et al. Isolation of Pseudoxanthomonas sp. J1 and bioinformatics analysis of lignocellulose-degrading genes[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 573-581 (in Chinese).
|
[30] |
李刚, 陈秀珠, 尤新新, 等. 一株猪场粪污水高效除污功能菌株的筛选鉴定、除污特性及机理研究[J]. 科技通报, 2020, 36(10): 82-87.
LI G, CHEN X Z, YOU X X, et al. Exploration on isolation, identification, characteristics, and mechanism of A strain with efficiently decontamination ability of swine manure wastewater[J]. Bulletin of Science and Technology, 2020, 36(10): 82-87 (in Chinese).
|
[31] |
XING W, LI J L, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270. doi: 10.1016/j.jes.2017.03.001
|
[32] |
徐洪超, 商靖, 刘铭荟, 等. 氮代谢相关酶的研究进展[J]. 安徽农业科学, 2022, 50(4): 17-20. doi: 10.3969/j.issn.0517-6611.2022.04.005
XU H C, SHANG J, LIU M H, et al. Research progress of enzymes related to nitrogen metabolism[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4): 17-20 (in Chinese). doi: 10.3969/j.issn.0517-6611.2022.04.005
|
[33] |
张利娟. 敲除克雷伯氏肺炎杆菌中NADH: 醌氧化还原酶对菌体生长和代谢的影响[D]. 上海: 华东理工大学, 2018.
ZHANG L J. Effect of knocking out NADH: Quinone oxidoreductase in Klebsiella pneumoniae on cell growth and metabolism[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese).
|