-
永定河是京津冀区域重要的水源涵养区和生态屏障,更被誉为北京的“母亲河”. 永定河综合治理与生态修复工作自2017年启动以来, 通过大规模生态补水工程的实施,地下水回补效果明显,生物多样性持续增加,全年Ⅲ类水质及以上河长占到评价河长的67.4%,水质提升明显[1]. 然而永定河流域仍有近10%的河长为Ⅴ类水质,下游区域(永定河北京段)由于受官厅水库库区水质的影响,氟化物和COD指标超标现象频繁出现,超标率分别达到21.6%和38.8%[2]. 此外,近年来河流痕量新污染物的生态环境风险也引起广泛关注[3 − 4].
针对此类微污染河水的水质净化和提升,人工湿地因其工艺简单,建设价格低廉,除污效能优良,绿色环境友好等特点而被广泛应用[5 − 9]. 近年来,随着国家新污染物治理行动方案的提出,人工湿地用于新污染物的净化效果也被广泛研究[10 − 11]. 湿地基质作为人工湿地的重要组成部分,很大程度上决定了出水水质的好坏. 它一方面通过过滤、沉淀、吸附等方式直接去除污染物,另一方面它为植物和微生物的生长提供生存的介质,从而间接去除污染物[12]. 越来越多的学者发现,单一的湿地基质难以满足对水质各个指标的同时净化,而对人工湿地基质进行合理的组配可以有效地提高人工湿地的整体处理效果并减少运行成本[12 − 15]. 人工湿地的构建类型也是影响湿地净化水体的重要因素. 表面流人工湿地和水平潜流人工湿地往往受限于占地面积较大和受低温影响较大等原因,并不适用于北京等用地紧张的北方城市,垂直潜流人工湿地则因其污染物去除率高且出水水质稳定的特点被更多人认可[16 − 18].
课题组前期研究发现,建筑垃圾填料、铁碳填料和火山岩负载纳米氧化铝填料(简称“纳米填料”)在实际工程示范中均展示了较好的脱氮除磷效果. 基于此,本研究选取这3种新型的填料基质,以模拟永定河Ⅴ类水水体为处理对象,构建了垂直潜流人工湿地系统,比较了3种基质单一使用和组合使用时对COD、氨氮、总磷的净化效果,在此基础上,评估了组合填料湿地对氟化物和12种PPCPs(分别为双氯芬酸、酮洛芬、吉非罗齐、卡马西平、吲哚美辛、甲芬那酸、苯扎贝特、布洛芬、美托洛尔、普萘洛尔、咖啡因、对乙酰氨基酚)的净化效果. 进一步通过宏基因组学对不同实验组进行了微生物群落和功能基因的分析,以解释系统净化效果与微生物群落之间的关系. 研究结果将客观评估3种基质作为湿地填料的可行性,同时为修复北方敏感区域微污染河水提供方案对策和技术支撑.
三种组合基质垂直潜流人工湿地对微污染河水的净化效果
Purification effect of three combined substrate vertical subsurface flow constructed wetlands on slightly polluted river water
-
摘要: 构建了建筑垃圾、铁碳和火山岩负载纳米氧化铝的3种组合基质填料的垂直潜流人工湿地,比较了组合填料湿地和单一填料湿地对模拟微污染河水中COD、氨氮和总磷的净化效果,进一步评估了组合填料湿地对氟化物和12种药品及个人护理用品(pharmaceuticals and personal care products,PPCPs)的降解效果. 结果显示,6个月的实验期内,在COD、氨氮和总磷进水浓度分别为30 mg·L−1、1.5 mg·L−1和0.5 mg·L−1时,组合填料湿地具有更全面的污染物净化能力,对COD、氨氮和总磷的平均去除率分别达到82.9%、86.6%、67.4%,出水均可达到地表Ⅲ类水质标准以上. 此外,组合填料湿地对氟化物的平均去除率为18.6%,对12种PPCPs的降解效果差异明显. 微生物群落的宏基因组学分析显示,变形菌门(Proteobacteria)均是不同填料湿地微生物系统里的优势菌门,而属水平下的种群丰度在各系统中有明显差异. 组合填料中除了优势菌种外,还发现了丰度较高的放线菌门(Actinobacteria),以及细杆菌属(Microbacterium)和噬氢菌属(Hydrogenophaga). 同时,氮代谢基因丰度和磷代谢基因丰度均在组合填料湿地中最高,表明组合填料湿地系统中具有更丰富的微生物群落环境,这也解释了该系统对不同污染物均有较好的净化效果的原因.Abstract: A vertical subsurface flow constructed wetland with construction waste, iron-carbon and volcanic rock loaded nano-alumina was constructed. The purification effects of the combined substrate wetland and the single substrate wetland on COD, ammonia nitrogen and total phosphorus in simulated micro-polluted river water were compared, and the degradation effects of the combined substrate wetland on fluoride and 12 kinds of pharmaceuticals and personal care products (PPCPs) were further evaluated. The results indicated that during the 6 month experimental period, the combined substrate wetland exhibited comprehensive pollutant removal capabilities when the influent concentrations of COD, ammonia nitrogen, and total phosphorus were 30 mg·L−1, 1.5 mg·L−1, and 0.5 mg·L−1, respectively. The average removal efficiencies for COD, ammonia nitrogen, and total phosphorus were found to be 82.9%, 86.6%, and 67.4%, respectively. The effluent quality met or exceeded the Surface Water Quality Class Ⅲ standard. In addition, the average fluoride removal rate of the combined substrate wetland was 18.6%, and the degradation effect of the 12 kinds of PPCPs was significantly different. Metagenomic analysis of microbial communities has shown that Proteobacteria is the dominant phylum in different substrate wetland microbial systems, and the population abundance at the genus level is significantly different in each system. In addition to dominant bacteria, Actinobacteria, Microbacterium and Hydrogenophaga were found to be abundant in the combined substrate. At the same time, the abundance of nitrogen metabolism genes and phosphorus metabolism genes were the highest in the combined substrate wetland, indicating that the combined substrate wetland system has a richer microbial community environment, which also explains why the system has a better purification effect on different pollutants.
-
Key words:
- constructed wetland /
- Yongding river /
- combined substrate /
- metagenomics analysis
-
表 1 四种填料的物理指标
Table 1. Physical parameters of four substrates
填料种类
Substrate type孔容积/(mL·g−1)
Pore volume孔隙率/%
Porosity粒径/mm
Partical size沸石 0.052 10.23 6—12 建筑垃圾 0.155 28.20 8—16 火山岩负载纳米氧化铝 0.243 39.03 8—12 铁碳 0.228 47.02 15—25 -
[1] 贾金生, 李文超, 湛正刚, 等. 水库大坝智慧化建设与高质量发展[M]. 北京: 中国建筑工业出版社, 2022. JIA J S, LI W C, ZHAN Z G, et al. Intelligent construction and high-quality development of reservoir dams[M]. Beijing: China Architecture & Building Press, 2022(in Chinese).
[2] 高园园, 郭悦, 段茂庆, 等. 永定河“引黄济京”生态补水对流域地表水环境的影响[J]. 江西科学, 2022, 40(6): 1102-1107. GAO Y Y, GUO Y, DUAN M Q, et al. Influence of ecological water supplement from the Yellow River to Beijing on surface water environment in Yongding River Basin[J]. Jiangxi Science, 2022, 40(6): 1102-1107 (in Chinese).
[3] WANG Y Z, ZHANG S L, CUI W Y, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River Basin, China: Seasonal distribution, source apportionment, and potential risk assessment[J]. Science of the Total Environment, 2018, 618: 419-429. doi: 10.1016/j.scitotenv.2017.11.066 [4] ZHANG J W, GE H, SHI J H, et al. A tiered probabilistic approach to assess antibiotic ecological and resistance development risks in the fresh surface waters of China[J]. Ecotoxicology and Environmental Safety, 2022, 243: 114018. doi: 10.1016/j.ecoenv.2022.114018 [5] SAEED T, PAUL B, AFRIN R, et al. Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load[J]. Chemical Engineering Journal, 2016, 287: 62-73. doi: 10.1016/j.cej.2015.10.118 [6] ZHU L Q, ZHANG H K, LI Y P, et al. Long-term variation characteristics of nutrients in the water and sediments of a surface flow constructed wetland with micro-polluted water sources[J]. Ecological Engineering, 2023, 187: 106848. doi: 10.1016/j.ecoleng.2022.106848 [7] 田景宏, 黄柄彬. 人工湿地处理永定河微污染河水试验研究[J]. 水处理技术, 2009, 35(6): 82-86. TIAN J H, HUANG B B. Study on the efficiency of different constructed wetland process for micro-polluted river water treatment[J]. Technology of Water Treatment, 2009, 35(6): 82-86 (in Chinese).
[8] 高志永, 汤双宇, 宋洪涛, 等. 北方多级复合人工湿地对微污染河水的净化效率: 以廊坊龙河湿地为例[J]. 湿地科学与管理, 2022, 18(3): 4-10. doi: 10.3969/j.issn.1673-3290.2022.03.01 GAO Z Y, TANG S Y, SONG H T, et al. The efficiency of purifying slightly polluted river water by multi-stage composite constructed wetland in North China: A case study of Longhe wetland in Langfang[J]. Wetland Science & Management, 2022, 18(3): 4-10 (in Chinese). doi: 10.3969/j.issn.1673-3290.2022.03.01
[9] WU H M, ZHANG J, LI P Z, et al. Nutrient removal in constructed microcosm wetlands for treating polluted river water in Northern China[J]. Ecological Engineering, 2011, 37(4): 560-568. doi: 10.1016/j.ecoleng.2010.11.020 [10] 徐嫚嫚, 石路路, 张琴, 等. 四环素类抗生素在焦炭填料人工湿地中的去除性能研究[J]. 水处理技术, 2022, 48(12): 119-124. XU M M , SHI L L, ZHANG Q, et al. Study on the removal performance of tetracycline antibiotics in coke-packed constructed wetland[J]. Technology of Water Treatment, 2022, 48(12): 119-124 (in Chinese).
[11] 李超予, 杨怡潇, 张宁, 等. 两种典型PPCPs在潜流人工湿地中的季节性去除效果及降解产物[J]. 环境科学, 2021, 42(2): 842-849. LI C Y, YANG Y X, ZHANG N, et al. Seasonal removal efficiency and degradation products of two typical PPCPs in subsurface flow constructed wetlands[J]. Environmental Science, 2021, 42(2): 842-849 (in Chinese).
[12] 张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报, 2016, 25(2): 292-299. ZHANG Y Y, CAO C L, REN L J, et al. Research on pollutants removal effect of different combined substrate under different hydraulic retention time in vertical flow constructed wetlands[J]. Ecology and Environmental Sciences, 2016, 25(2): 292-299 (in Chinese).
[13] 肖其亮, 熊丽萍, 彭华, 等. 不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究, 2022, 35(5): 1277-1287. XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combinations[J]. Research of Environmental Sciences, 2022, 35(5): 1277-1287 (in Chinese).
[14] 祝志超, 缪恒锋, 崔健, 等. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036. ZHU Z C, MIAO H F, CUI J, et al. Advanced treatment performance of combined constructed wetland system on secondary effluent from wastewater treatment plant[J]. Research of Environmental Sciences, 2018, 31(12): 2028-2036 (in Chinese).
[15] CUI E P, ZHOU Z C, GAO F, et al. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: A review[J]. Science of the Total Environment, 2023, 859: 160257. doi: 10.1016/j.scitotenv.2022.160257 [16] 孙井梅, 李阳, 李志杰, 等. 垂直潜流人工湿地净化北方微污染水体试验研究[J]. 生态环境学报, 2012, 21(10): 1711-1716. SUN J M, LI Y, LI Z J, et al. Experimental study on purification of micro-polluted water in northern area by vertical flow constructed wetland[J]. Ecology and Environmental Sciences, 2012, 21(10): 1711-1716 (in Chinese).
[17] 廖雪珂, 严晗璐, 王智源, 等. 低温季节水平潜流和垂直潜流人工湿地尾水深度处理中试[J]. 环境科学, 2020, 41(12): 5509-5517. LIAO X K, YAN H L, WANG Z Y, et al. Advanced treatment of tail water using pilot-scale horizontal and vertical subsurface flow constructed wetlands in low-temperature seasons[J]. Environmental Science, 2020, 41(12): 5509-5517 (in Chinese).
[18] ÁVILA C, GARCÍA-GALÁN M J, BORREGO C M, et al. New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands[J]. Science of the Total Environment, 2021, 755: 142554. doi: 10.1016/j.scitotenv.2020.142554 [19] DU R J, ZHANG Q X, LERESCHE F, et al. The determination and prediction of the apparent reaction rates between excited triplet-state DOM and selected PPCPs[J]. Science of the Total Environment, 2023, 881: 163117. doi: 10.1016/j.scitotenv.2023.163117 [20] GUAN W, YIN M, HE T, et al. Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J]. Environmental Science and Pollution Research, 2015, 22(20): 16202-16209. doi: 10.1007/s11356-015-5160-9 [21] YAO D D, HU X J, SHEN X T, et al. Can calcium-based constructed wetlands improve fluoride removal performance?[J]. Chemical Engineering Journal, 2022, 450: 138314. doi: 10.1016/j.cej.2022.138314 [22] MATAMOROS V, ARIAS C, BRIX H, et al. Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products[J]. Water Research, 2009, 43(1): 55-62. doi: 10.1016/j.watres.2008.10.005 [23] MATAMOROS V, BAYONA J M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands[J]. Environmental Science & Technology, 2006, 40(18): 5811-5816. [24] REYES-CONTRERAS C, MATAMOROS V, RUIZ I, et al. Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater[J]. Chemosphere, 2011, 84(9): 1200-1207. doi: 10.1016/j.chemosphere.2011.06.003 [25] LÓPEZ D, SEPÚLVEDA-MARDONES M, RUIZ-TAGLE N, et al. Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons[J]. Science of the Total Environment, 2019, 648: 1042-1051. doi: 10.1016/j.scitotenv.2018.08.186 [26] 彭广生, 陆燕青, 曾鸿鹄, 等. 人工湿地β-六六六去除效果及细菌群落特征分析[J]. 水处理技术, 2020, 46(8): 34-38. PENG G S, LU Y Q, ZENG H H, et al. Purification effect of β-HCH by vertical flow constructed wetlands with different plant[J]. Technology of Water Treatment, 2020, 46(8): 34-38 (in Chinese).
[27] 李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38(9): 3713-3720. LI Z L, DING Y L, BAI S Y, et al. Correlations between substrate structure and microbial community in subsurface flow constructed wetlands[J]. Environmental Science, 2017, 38(9): 3713-3720 (in Chinese).
[28] ARIESYADY H D, ITO T, OKABE S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research, 2007, 41(7): 1554-1568. doi: 10.1016/j.watres.2006.12.036 [29] 侯丽媛, 江经纬, 蒋建东, 等. 假黄单胞菌株J1的筛选及木质纤维素降解基因的生物信息学分析[J]. 南京农业大学学报, 2016, 39(4): 573-581. HOU L Y, JIANG J W, JIANG J D, et al. Isolation of Pseudoxanthomonas sp. J1 and bioinformatics analysis of lignocellulose-degrading genes[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 573-581 (in Chinese).
[30] 李刚, 陈秀珠, 尤新新, 等. 一株猪场粪污水高效除污功能菌株的筛选鉴定、除污特性及机理研究[J]. 科技通报, 2020, 36(10): 82-87. LI G, CHEN X Z, YOU X X, et al. Exploration on isolation, identification, characteristics, and mechanism of A strain with efficiently decontamination ability of swine manure wastewater[J]. Bulletin of Science and Technology, 2020, 36(10): 82-87 (in Chinese).
[31] XING W, LI J L, LI P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities[J]. Journal of Environmental Sciences, 2018, 65: 262-270. doi: 10.1016/j.jes.2017.03.001 [32] 徐洪超, 商靖, 刘铭荟, 等. 氮代谢相关酶的研究进展[J]. 安徽农业科学, 2022, 50(4): 17-20. doi: 10.3969/j.issn.0517-6611.2022.04.005 XU H C, SHANG J, LIU M H, et al. Research progress of enzymes related to nitrogen metabolism[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4): 17-20 (in Chinese). doi: 10.3969/j.issn.0517-6611.2022.04.005
[33] 张利娟. 敲除克雷伯氏肺炎杆菌中NADH: 醌氧化还原酶对菌体生长和代谢的影响[D]. 上海: 华东理工大学, 2018. ZHANG L J. Effect of knocking out NADH: Quinone oxidoreductase in Klebsiella pneumoniae on cell growth and metabolism[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese).