[1] SHAO S C, HU Y Y, CHENG J H, et al. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment[J]. Critical Reviews in Biotechnology, 2018, 38(8): 1195-1208. doi: 10.1080/07388551.2018.1471038
[2] YANG Y, YIN S, LI Y X, et al. Application of aptamers in detection and chromatographic purification of antibiotics in different matrices[J]. TrAC Trends in Analytical Chemistry, 2017, 95: 1-22. doi: 10.1016/j.trac.2017.07.023
[3] RIBEIRO Da CUNHA B, FONSECA L P, CALADO C R C. Antibiotic discovery: Where have we come from, where do we go?[J]. Antibiotics, 2019, 8(2): 45. doi: 10.3390/antibiotics8020045
[4] GRENNI P, ANCONA V, BARRA CARACCIOLO A. Ecological effects of antibiotics on natural ecosystems: A review[J]. Microchemical Journal, 2018, 136: 25-39. doi: 10.1016/j.microc.2017.02.006
[5] QIAO L N, QIAN S H, WANG Y H, et al. Carbon-dots-based lab-on-a-nanoparticle approach for the detection and differentiation of antibiotics[J]. Chemistry, 2018, 24(18): 4703-4709. doi: 10.1002/chem.201706056
[6] YI H, HUANG D L, QIN L, et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production[J]. Applied Catalysis B:Environmental, 2018, 239: 408-424. doi: 10.1016/j.apcatb.2018.07.068
[7] 姚圆, 莫测辉, 李彦文, 等. 固相萃取-高效液相色谱法分析蔬菜中四环素类抗生素[J]. 环境化学, 2010, 29(3): 536-541. YAO Y, MO C H, LI Y W, et al. Determination of tetracyclines in vegetables using solid phase extraction and hplc with fluorescence detection[J]. Environmental Chemistry, 2010, 29(3): 536-541 (in Chinese).
[8] 李振环, 朱英, 胡小键, 等. 抗生素的人体健康风险、内暴露特征及检测技术研究进展[J]. 环境化学, 2023, 42(12): 4051-4066. doi: 10.7524/j.issn.0254-6108.2022052201 LI Z H, ZHU Y, HU X J, et al. Research progress on human health risk, internal exposure characteristics and analysis technologies of antibiotics[J]. Environmental Chemistry, 2023, 42(12): 4051-4066 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022052201
[9] 李颖, 黄鑫, 邹子玉, 等. 固相萃取-超高效液相色谱串联质谱同时测定鸡粪中27种抗生素[J]. 环境化学, 2023, 42(12): 4185-4194. doi: 10.7524/j.issn.0254-6108.2022060102 LI Y, HUANG X, ZOU Z Y, et al. Simultaneous determination of 27 antibiotics in chicken manure based on solid phase extraction and ultra-high performance liquid chromatographytandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(12): 4185-4194 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022060102
[10] 黄秋鑫, 陈琼, 雷敏, 等. 同位素内标稀释高效液相色谱-质谱法同时测定水中多种痕量抗生素[J]. 环境化学, 2016, 35(7): 1493-1499. doi: 10.7524/j.issn.0254-6108.2016.07.2015121007 HUANG Q X, CHEN Q, LEI M, et al. Simultaneous determination of trace antibiotics in surface water by isotopediluted high performance liquid chromatography-mass spectrometry[J]. Environmental Chemistry, 2016, 35(7): 1493-1499 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.07.2015121007
[11] HAN S J, ZHOU T J, YIN B J, et al. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine[J]. Microchimica Acta, 2018, 185(4): 210. doi: 10.1007/s00604-018-2736-3
[12] PAUL P, SÄNGER-VAN de GRIEND C, ADAMS E, et al. A simple, low-cost and robust capillary zone electrophoresis method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in money-constrained laboratories[J]. Electrophoresis, 2018, 39(20): 2521-2529. doi: 10.1002/elps.201800033
[13] 张志超, 程和发. 环境介质中喹诺酮类抗生素的前处理与检测方法研究进展[J]. 环境化学, 2019, 38(1): 1-22. doi: 10.1002/etc.4337 ZHANG Z C, CHENG H F. Recent development in sample pretreatment and detection methods for the determination of quinolones in environmental matrices[J]. Environmental Chemistry, 2019, 38(1): 1-22 (in Chinese). doi: 10.1002/etc.4337
[14] 江新泽, 常兴, 李原婷, 等. 传感器在抗生素检测中的研究进展[J]. 环境化学, 2016, 35(12): 2491-2500. doi: 10.7524/j.issn.0254-6108.2016.12.2016042502 JIANG X Z, CHANG X, LI Y T, et al. Research progress on sensors in detection of antibiotics[J]. Environmental Chemistry, 2016, 35(12): 2491-2500 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.12.2016042502
[15] YU H X, ALKHAMIS O, CANOURA J, et al. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development[J]. Angewandte Chemie, 2021, 60(31): 16800-16823. doi: 10.1002/anie.202008663
[16] KHOSHBIN Z, HOUSAINDOKHT M R, VERDIAN A, et al. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors[J]. Biosensors and Bioelectronics, 2018, 116: 130-147. doi: 10.1016/j.bios.2018.05.051
[17] ROUSHANI M, GHANBARI K, JAFAR HOSEINI S. Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic[J]. Microchemical Journal, 2018, 141: 96-103. doi: 10.1016/j.microc.2018.05.016
[18] JIANG Y, SHI M L, LIU Y, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins[J]. Angewandte Chemie (International Ed. in English), 2017, 56(39): 11916-11920. doi: 10.1002/anie.201703807
[19] 段培宇, 陈寒玉, 张宝忠, 等. 动物源性食品中抗生素类污染物生物检测技术研究进展[J]. 环境化学, 2022, 41(2): 581-590. doi: 10.7524/j.issn.0254-6108.2020100704 DUAN P Y, CHEN H Y, ZHANG B Z, et al. Research progress of bioassay technology for antibiotic pollutants in animal-derived foods[J]. Environmental Chemistry, 2022, 41(2): 581-590 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020100704
[20] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505-510. doi: 10.1126/science.2200121
[21] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. doi: 10.1038/346818a0
[22] LIU C B, LU C X, TANG Z G, et al. Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin[J]. Microchimica Acta, 2015, 182(15): 2567-2575.
[23] GARCIA-ALVAREZ L, DAWSON S, COOKSON B, et al. Working across the veterinary and human health sectors[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(suppl_1): i37-i49.
[24] QIAN S W, CHANG D R, HE S S, et al. Aptamers from random sequence space: Accomplishments, gaps and future considerations[J]. Analytica Chimica Acta, 2022, 1196: 339511. doi: 10.1016/j.aca.2022.339511
[25] HERMANN T, PATEL D J. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5454): 820-825. doi: 10.1126/science.287.5454.820
[26] WARNER K D, CHEN M C, SONG W J, et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein[J]. Nature Structural & Molecular Biology, 2014, 21(8): 658-663.
[27] SINGH V. Ultrasensitive quantum dot-coupled-surface plasmon microfluidic aptasensor array for serum insulin detection[J]. Talanta, 2020, 219: 121314. doi: 10.1016/j.talanta.2020.121314
[28] QIU W W, WANG Q X, YANO N, et al. Flexible flower-like MOF of Cu2(trans-1, 4-cyclohexanedicarboxylic acid)2 as the electroactive matrix material for label-free and highly sensitive sensing of thrombin[J]. Electrochimica Acta, 2020, 353: 136611. doi: 10.1016/j.electacta.2020.136611
[29] YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications[J]. The Science of the Total Environment, 2021, 762: 143129. doi: 10.1016/j.scitotenv.2020.143129
[30] TANG W X, YU J, WANG Z Z, et al. Label-free potentiometric aptasensing platform for the detection of Pb2+ based on guanine quadruplex structure[J]. Analytica Chimica Acta, 2019, 1078: 53-59. doi: 10.1016/j.aca.2019.06.020
[31] MEHLHORN A, RAHIMI P, JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review[J]. Biosensors, 2018, 8(2): 54. doi: 10.3390/bios8020054
[32] PRAYLE A, WATSON A, FORTNUM H, et al. Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis[J]. Thorax, 2010, 65(7): 654-658. doi: 10.1136/thx.2009.131532
[33] WANG X R, YANG S P, LI Y, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of Chromatography A, 2018, 1542: 28-36. doi: 10.1016/j.chroma.2018.02.029
[34] ZHANG Z, CAO X L, ZHANG Z P, et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples[J]. Talanta, 2020, 208: 120385. doi: 10.1016/j.talanta.2019.120385
[35] WANG Y, RANDO R R. Specific binding of aminoglycoside antibiotics to RNA[J]. Chemistry & Biology, 1995, 2(5): 281-290.
[36] MORSE D P. Direct selection of RNA beacon aptamers[J]. Biochemical and Biophysical Research Communications, 2007, 359(1): 94-101. doi: 10.1016/j.bbrc.2007.05.072
[37] SPIGA F M, MAIETTA P, GUIDUCCI C. More DNA-aptamers for small drugs: A capture-SELEX coupled with surface plasmon resonance and high-throughput sequencing[J]. ACS Combinatorial Science, 2015, 17(5): 326-333. doi: 10.1021/acscombsci.5b00023
[38] SONG K M, CHO M, JO H, et al. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J]. Analytical Biochemistry, 2011, 415(2): 175-181. doi: 10.1016/j.ab.2011.04.007
[39] JALALIAN S H, KARIMABADI N, RAMEZANI M, et al. Electrochemical and optical aptamer-based sensors for detection of tetracyclines[J]. Trends in Food Science & Technology, 2018, 73: 45-57.
[40] STOLTENBURG R, NIKOLAUS N, STREHLITZ B. Capture-SELEX: Selection of DNA aptamers for aminoglycoside antibiotics[J]. Journal of Analytical Methods in Chemistry, 2012, 2012: 415697.
[41] SANFORD A A, RANGEL A E, FEAGIN T A, et al. RE-SELEX: Restriction enzyme-based evolution of structure-switching aptamer biosensors[J]. Chemical Science, 2021, 12(35): 11692-11702. doi: 10.1039/D1SC02715H
[42] ZHOU N D, WANG J Y, ZHANG J, et al. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey[J]. Talanta, 2013, 108: 109-116. doi: 10.1016/j.talanta.2013.01.064
[43] SOHEILI V, TAGHDISI S M, KHAYYAT M H, et al. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer[J]. Microchimica Acta, 2016, 183(5): 1687-1697. doi: 10.1007/s00604-016-1798-3
[44] LIU Z C, ZHANG Y F, XIE Y, et al. An aptamer-based colorimetric sensor for streptomycin and its application in food inspection[J]. Chemical Research in Chinese Universities, 2017, 33(5): 714-720. doi: 10.1007/s40242-017-7029-6
[45] WALLIS M G, von AHSEN U, SCHROEDER R, et al. A novel RNA motif for neomycin recognition[J]. Chemistry & Biology, 1995, 2(8): 543-552.
[46] WEIGAND J E, SANCHEZ M, GUNNESCH E B, et al. Screening for engineered neomycin riboswitches that control translation initiation[J]. RNA, 2008, 14(1): 89-97. doi: 10.1261/rna.772408
[47] DE-LOS-SANTOS-ÁLVAREZ N, LOBO-CASTAÑÓN M J, MIRANDA-ORDIERES A J, et al. SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B[J]. Biosensors and Bioelectronics, 2009, 24(8): 2547-2553. doi: 10.1016/j.bios.2009.01.011
[48] 巫朦朦, 韩旭艳, 蔡蓉凤, 等. 庆大霉素特异性单链DNA适配体的筛选、表征和应用[J]. 中国科学:生命科学, 2019, 49(5): 637-648. doi: 10.1360/N052018-00238 WU M M, HAN X Y, CAI R F, et al. Selection, characterization and application of gentamicin-specific single-stranded DNA Aptamers[J]. Scientia Sinica (Vitae), 2019, 49(5): 637-648 (in Chinese). doi: 10.1360/N052018-00238
[49] HAN X Y, ZHANG Y H, NIE J J, et al. Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers[J]. Microchimica Acta, 2018, 185(1): 4. doi: 10.1007/s00604-017-2568-6
[50] NIE J J, YUAN L Y, JIN K, et al. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity[J]. Biosensors and Bioelectronics, 2018, 122: 254-262. doi: 10.1016/j.bios.2018.09.072
[51] TAGHDISI S M, DANESH N M, RAMEZANI M, et al. A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines[J]. Biosensors and Bioelectronics, 2016, 85: 509-514. doi: 10.1016/j.bios.2016.05.048
[52] ZHAO H M, GAO S, LIU M, et al. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide[J]. Microchimica Acta, 2013, 180(9): 829-835.
[53] LIU Y, KONG J J, YUAN J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331: 242-254. doi: 10.1016/j.cej.2017.08.114
[54] ZAHRA Q U A, LUO Z F, ALI R, et al. Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: An overview of the past decade[J]. Nanomaterials, 2021, 11(4): 840. doi: 10.3390/nano11040840
[55] BERENS C, THAIN A, SCHROEDER R. A tetracycline-binding RNA aptamer[J]. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2549-2556.
[56] XIAO H, EDWARDS T E, FERRÉ-D'AMARÉ A R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch[J]. Chemistry & Biology, 2008, 15(10): 1125-1137.
[57] NIAZI J H, LEE S J, KIM Y S, et al. ssDNA aptamers that selectively bind oxytetracycline[J]. Bioorganic & Medicinal Chemistry, 2008, 16(3): 1254-1261.
[58] NIAZI J H, LEE S J, GU M B. Single-stranded DNA aptamers specific for antibiotics tetracyclines[J]. Bioorganic & Medicinal Chemistry, 2008, 16(15): 7245-7253.
[59] KWON Y S, AHMAD RASTON N H, GU M B. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity[J]. Chemical Communications, 2014, 50(1): 40-42. doi: 10.1039/C3CC47108J
[60] ZHAO Y C, ONG S, CHEN Y J, et al. Label-free and dye-free fluorescent sensing of tetracyclines using a capture-selected DNA aptamer[J]. Analytical Chemistry, 2022, 94(28): 10175-10182. doi: 10.1021/acs.analchem.2c01561
[61] JEONG S, PAENG I R. Sensitivity and selectivity on aptamer-based assay: The determination of tetracycline residue in bovine milk[J]. The Scientific World Journal, 2012, 2012: 159456.
[62] MÜLLER M, WEIGAND J E, WEICHENRIEDER O, et al. Thermodynamic characterization of an engineered tetracycline-binding riboswitch[J]. Nucleic Acids Research, 2006, 34(9): 2607-2617. doi: 10.1093/nar/gkl347
[63] TICKNER Z J, ZHONG G C, SHEPTACK K R, et al. Selection of high-affinity RNA aptamers that distinguish between doxycycline and tetracycline[J]. Biochemistry, 2020, 59(37): 3473-3486. doi: 10.1021/acs.biochem.0c00586
[64] WANG S, LIU J H, YONG W, et al. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in Honey[J]. Talanta, 2015, 131: 562-569. doi: 10.1016/j.talanta.2014.08.028
[65] KIM C H, LEE L P, MIN J R, et al. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk[J]. Biosensors and Bioelectronics, 2014, 51: 426-430. doi: 10.1016/j.bios.2013.08.003
[66] KELLMANN M, MUENSTER H, ZOMER P, et al. Full scan MS in comprehensive qualitative and quantitative residue analysis in food and feed matrices: How much resolving power is required?[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(8): 1464-1476. doi: 10.1016/j.jasms.2009.05.010
[67] ABEDALWAFA M A, LI Y, NI C F, et al. Colorimetric sensor arrays for the detection and identification of antibiotics[J]. Analytical Methods, 2019, 11(22): 2836-2854. doi: 10.1039/C9AY00371A
[68] SONG K M, JEONG E, JEON W, et al. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods[J]. Analytical and Bioanalytical Chemistry, 2012, 402(6): 2153-2161. doi: 10.1007/s00216-011-5662-3
[69] PANIEL N, ISTAMBOULIÉ G, TRIKI A, et al. Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor[J]. Talanta, 2017, 162: 232-240. doi: 10.1016/j.talanta.2016.09.058
[70] LEE A Y, HA N R, JUNG I P, et al. Development of a ssDNA aptamer for detection of residual benzylpenicillin[J]. Analytical Biochemistry, 2017, 531: 1-7. doi: 10.1016/j.ab.2017.05.013
[71] WANG L H, WANG C C, LI H. Selection of DNA aptamers and establishment of an effective aptasensor for highly sensitive detection of cefquinome residues in milk[J]. The Analyst, 2018, 143(13): 3202-3208. doi: 10.1039/C8AN00709H
[72] XU Y Y, HAN T, LI X Q, et al. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism[J]. Analytica Chimica Acta, 2015, 891: 298-303. doi: 10.1016/j.aca.2015.08.013
[73] DENG C Y, LIU H, ZHANG M M, et al. Light-up nonthiolated aptasensor for low-mass, soluble amyloid-β40 oligomers at high salt concentrations[J]. Analytical Chemistry, 2018, 90(3): 1710-1717. doi: 10.1021/acs.analchem.7b03468
[74] EPANCHINTSEVA A, VOROBJEV P, PYSHNYI D, et al. Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2018, 34(1): 164-172. doi: 10.1021/acs.langmuir.7b02529
[75] SAHA K, AGASTI S S, KIM C, et al. Gold nanoparticles in chemical and biological sensing[J]. Chemical Reviews, 2012, 112(5): 2739-2779. doi: 10.1021/cr2001178
[76] ZHOU N D, LUO J B, ZHANG J, et al. A label-free electrochemical aptasensor for the detection of kanamycin in milk[J]. Analytical Methods, 2015, 7(5): 1991-1996. doi: 10.1039/C4AY02710H
[77] NIU S C, LV Z Z, LIU J C, et al. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection[J]. PLoS One, 2014, 9(10): e109263. doi: 10.1371/journal.pone.0109263
[78] WANG S, YONG W, LIU J H, et al. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey[J]. Biosensors and Bioelectronics, 2014, 57: 192-198. doi: 10.1016/j.bios.2014.02.032
[79] WANG Y, WANG B, SHEN J, et al. Aptamer based bare eye detection of kanamycin by using a liquid crystal film on a glass support[J]. Microchimica Acta, 2017, 184(10): 3765-3771. doi: 10.1007/s00604-017-2405-y
[80] CUI X J, LI R G, LIU X F, et al. Low-background and visual detection of antibiotic based on target-activated colorimetric split peroxidase DNAzyme coupled with dual nicking enzyme signal amplification[J]. Analytica Chimica Acta, 2018, 997: 1-8. doi: 10.1016/j.aca.2017.10.009
[81] 余杰, 张宴, 任洪强. 基于共振能量转移的生物传感器用于环境检测的研究进展[J]. 环境化学, 2023, 42(12): 4171-4184. doi: 10.7524/j.issn.0254-6108.2022052902 YU J, ZHANG Y, REN H Q. Research progress of biosensors based on resonance energy transfer in the field of environmental pollutant detection[J]. Environmental Chemistry, 2023, 42(12): 4171-4184 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022052902
[82] LI H, SUN D E, LIU Y J, et al. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics, 2014, 55: 149-156. doi: 10.1016/j.bios.2013.11.079
[83] LIAO Q G, WEI B H, LUO L G. Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes[J]. Microchimica Acta, 2017, 184(2): 627-632. doi: 10.1007/s00604-016-2050-x
[84] CHEN J, LI Z H, GE J, et al. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles[J]. Talanta, 2015, 139: 226-232. doi: 10.1016/j.talanta.2015.02.036
[85] BELAL A S F, ISMAIL A, ELNAGGAR M M, et al. Click chemistry inspired copper sulphide nanoparticle-based fluorescence assay of kanamycin using DNA aptamer[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 205: 48-54. doi: 10.1016/j.saa.2018.07.011
[86] ZHOU W J, XU L, JIANG B Y. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples[J]. Analytica Chimica Acta, 2021, 1148: 238195. doi: 10.1016/j.aca.2020.12.070
[87] RAMEZANI M, DANESH N M, LAVAEE P, et al. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles[J]. Sensors and Actuators B:Chemical, 2016, 222: 1-7. doi: 10.1016/j.snb.2015.08.024
[88] LEUNG K H, HE H Z, CHAN D S H, et al. An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution[J]. Sensors and Actuators B:Chemical, 2013, 177: 487-492. doi: 10.1016/j.snb.2012.11.053
[89] HAO L L, GU H J, DUAN N, et al. A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk[J]. Analytical Methods, 2016, 8(44): 7929-7936. doi: 10.1039/C6AY02304E
[90] YANG K, HU Y J, DONG N. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol[J]. Biosensors and Bioelectronics, 2016, 80: 373-377. doi: 10.1016/j.bios.2016.01.064
[91] GE L, LI H N, DU X J, et al. Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor[J]. Biosensors and Bioelectronics, 2018, 111: 131-137. doi: 10.1016/j.bios.2018.04.008
[92] LI H H, CHEN Q S, HASSAN M M, et al. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification[J]. Biosensors and Bioelectronics, 2017, 92: 192-199. doi: 10.1016/j.bios.2017.02.009
[93] MENG F W, MA X Y, DUAN N, et al. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J]. Talanta, 2017, 165: 412-418. doi: 10.1016/j.talanta.2016.12.088
[94] LI H H, GENG W H, HARUNA S A, et al. A target-responsive release SERS sensor for sensitive detection of tetracycline using aptamer-gated HP-UiO-66-NH2 nanochannel strategy[J]. Analytica Chimica Acta, 2022, 1220: 339999. doi: 10.1016/j.aca.2022.339999
[95] LV Y, QI S, KHAN I M, et al. Concatenated dynamic DNA network modulated SERS aptasensor based on gold-magnetic nanochains and Au@Ag nanoparticles for enzyme-free amplification analysis of tetracycline[J]. Analytica Chimica Acta, 2023, 1270: 341238. doi: 10.1016/j.aca.2023.341238
[96] PFEIFFER F, MAYER G. Selection and biosensor application of aptamers for small molecules[J]. Frontiers in Chemistry, 2016, 4: 25.
[97] SONG S P, WANG L H, LI J, et al. Aptamer-based biosensors[J]. TrAC Trends in Analytical Chemistry, 2008, 27(2): 108-117. doi: 10.1016/j.trac.2007.12.004
[98] DAPRÀ J, LAURIDSEN L H, NIELSEN A T, et al. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor[J]. Biosensors and Bioelectronics, 2013, 43: 315-320. doi: 10.1016/j.bios.2012.12.058
[99] ROSATI G, DAPRÀ J, CHERRÉ S, et al. Performance improvement by layout designs of conductive polymer microelectrode based impedimetric biosensors[J]. Electroanalysis, 2014, 26(6): 1400-1408. doi: 10.1002/elan.201400062
[100] WANG X Z, DONG S S, GAI P P, et al. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy[J]. Biosensors and Bioelectronics, 2016, 82: 49-54. doi: 10.1016/j.bios.2016.03.055
[101] WANG J, MA K, YIN H S, et al. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles[J]. Microchimica Acta, 2018, 185(1): 68. doi: 10.1007/s00604-017-2566-8
[102] SHARMA A, ISTAMBOULIE G, HAYAT A, et al. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample[J]. Sensors and Actuators B:Chemical, 2017, 245: 507-515. doi: 10.1016/j.snb.2017.02.002
[103] SUN X, LI F L, SHEN G H, et al. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection[J]. Analyst, 2014, 139(1): 299-308. doi: 10.1039/C3AN01840G
[104] CHEN M, GAN N, LI T H, et al. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy[J]. Analytica Chimica Acta, 2017, 968: 30-39. doi: 10.1016/j.aca.2017.03.024
[105] LIU R, YANG Z H, GUO Q, et al. Signaling-probe displacement electrochemical aptamer-based sensor (SD-EAB) for detection of nanomolar kanamycin A[J]. Electrochimica Acta, 2015, 182: 516-523. doi: 10.1016/j.electacta.2015.09.140
[106] TAGHDISI HEIDARIAN S M, TAVANAEE SANI A, DANESH N M, et al. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat[J]. Sensors and Actuators B:Chemical, 2021, 334: 129632. doi: 10.1016/j.snb.2021.129632
[107] ALTHOMALI R H, HAMOUD ALSHAHRANI S, QASIM ALMAJIDI Y, et al. Current trends in nanomaterials-based electrochemiluminescence aptasensors for the determination of antibiotic residues in foodstuffs: A comprehensive review[J]. Critical Reviews in Analytical Chemistry, 2023(22): 1-17.
[108] SHEN Y Z, GAO X, LU H J, et al. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices[J]. Coordination Chemistry Reviews, 2023, 476: 214927. doi: 10.1016/j.ccr.2022.214927
[109] ZHONG X, LI X, ZHUO Y, et al. Synthesizing anode electrochemiluminescent self-catalyzed carbon dots-based nanocomposites and its application in sensitive ECL biosensor for microRNA detection[J]. Sensors and Actuators B:Chemical, 2020, 305: 127490. doi: 10.1016/j.snb.2019.127490
[110] ZHAO Y, WANG R Z, WANG Y H, et al. Dual-channel molecularly imprinted sensor based on dual-potential electrochemiluminescence of Zn-MOFs for double detection of trace chloramphenicol[J]. Food Chemistry, 2023, 413: 135627. doi: 10.1016/j.foodchem.2023.135627
[111] WEN J, JIANG D, SHAN X L, et al. Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol[J]. Microchemical Journal, 2022, 172: 106927. doi: 10.1016/j.microc.2021.106927
[112] ZHANG X Y, DU Y, LIU X J, et al. Enhanced anode electrochemiluminescence in split aptamer sensor for kanamycin trace monitoring[J]. Food Chemistry, 2023, 420: 136083. doi: 10.1016/j.foodchem.2023.136083
[113] ZHAI H G, WANG Y, GENG L J, et al. Bipotential-resolved electrochemiluminescence biosensor based on Bi2S3@Au nanoflowers for simultaneous detection of Cd(II) and ampicillin in aquatic products[J]. Food Chemistry, 2023, 414: 135708. doi: 10.1016/j.foodchem.2023.135708
[114] BAI X J, HOU H, ZHANG B L, et al. Label-free detection of kanamycin using aptamer-based cantilever array sensor[J]. Biosensors and Bioelectronics, 2014, 56: 112-116. doi: 10.1016/j.bios.2013.12.068