[1] |
CHEN H R, WANG J J, ZHAO X T, et al. Occurrence of dissolved black carbon in source water and disinfection byproducts formation during chlorination[J]. Journal of Hazardous Materials, 2022, 435: 129054. doi: 10.1016/j.jhazmat.2022.129054
|
[2] |
WANG L, LI J, ZHAO J, et al. Photodegradation of clindamycin by the dissolved black carbon is simultaneously regulated by ROS generation and the binding effect[J]. Water Research, 2023, 233: 119784. doi: 10.1016/j.watres.2023.119784
|
[3] |
张宵, 刘一帆, 刘强, 等. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001
ZHANG X, LIU Y F, LIU Q, et al. Dissolved black carbon enhanced the photodegradation of tetracycline in aqueous solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021122001
|
[4] |
ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution[J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
|
[5] |
FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
|
[6] |
ZHANG P, SHAO Y F, XU X J, et al. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light[J]. Science of the Total Environment, 2020, 724: 137913. doi: 10.1016/j.scitotenv.2020.137913
|
[7] |
LIU H T, GE Q, XU F C, et al. Dissolved black carbon induces fast photo-reduction of silver ions under simulated sunlight[J]. Science of the Total Environment, 2021, 775: 145897. doi: 10.1016/j.scitotenv.2021.145897
|
[8] |
XU Y H, OU Q, LIU C H, et al. Aggregation and deposition behaviors of dissolved black carbon with coexisting heavy metals in aquatic solution[J]. Environmental Science:Nano, 2020, 7(9): 2773-2784. doi: 10.1039/D0EN00373E
|
[9] |
HE H, LIU K Q, GUO Z W, et al. Photoaging mechanisms of microplastics mediated by dissolved organic matter in an iron-rich aquatic environment[J]. Science of the Total Environment, 2023, 860: 160488. doi: 10.1016/j.scitotenv.2022.160488
|
[10] |
陈苏, 刘颖, 张晓莹, 等. 微塑料老化行为及其对重金属吸附影响的研究进展[J]. 生态与农村环境学报, 2023, 39(1): 12-19.
CHEN S, LIU Y, ZHANG X Y, et al. Progress in the study on ageing behavior of microplastics and its effect on heavy metal adsorption[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 12-19 (in Chinese).
|
[11] |
XIAO Y H, WANG Q J, LI P H, et al. Impact of light-aged microplastic on microalgal production of dissolved organic matter[J]. Science of the Total Environment, 2023, 889: 164312. doi: 10.1016/j.scitotenv.2023.164312
|
[12] |
XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113
|
[13] |
ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658
|
[14] |
CHEN M L, LIU S S, BI M H, et al. Aging behavior of microplastics affected DOM in riparian sediments: From the characteristics to bioavailability[J]. Journal of Hazardous Materials, 2022, 431: 128522. doi: 10.1016/j.jhazmat.2022.128522
|
[15] |
HUNG C M, CHEN C W, HUANG C P, et al. Ecological responses of coral reef to polyethylene microplastics in community structure and extracellular polymeric substances[J]. Environmental Pollution, 2022, 307: 119522. doi: 10.1016/j.envpol.2022.119522
|
[16] |
SUN Y Z, JI J H, TAO J G, et al. Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems[J]. TrAC Trends in Analytical Chemistry, 2023, 158: 116882. doi: 10.1016/j.trac.2022.116882
|
[17] |
SONG F H, LI T T, WU F C, et al. Temperature-dependent molecular evolution of biochar-derived dissolved black carbon and its interaction mechanism with polyvinyl chloride microplastics[J]. Environmental Science & Technology, 2023, 57(18): 7285-7297.
|
[18] |
高洁, 江韬, 闫金龙, 等. 天然日光辐照下两江交汇处溶解性有机质(DOM)光漂白过程: 以涪江-嘉陵江为例[J]. 环境科学, 2014, 35(9): 3397-3407.
GAO J, JIANG T, YAN J L, et al. Photobleaching of dissolved organic matter(DOM) from confluence of two rivers under natural solar radiation: A case study of Fujiang River-Jialingjiang River[J]. Environmental Science, 2014, 35(9): 3397-3407 (in Chinese).
|
[19] |
左林子, 侯婉儿, 王飞, 等. 微塑料的光老化过程及其携带内源污染物释放的研究进展[J]. 环境化学, 2022, 41(7): 2245-2255. doi: 10.7524/j.issn.0254-6108.2021082001
ZUO L Z, HOU W E, WANG F, et al. Research progress on photo-aging of microplastics and their effects on the release of endogenous pollutants[J]. Environmental Chemistry, 2022, 41(7): 2245-2255 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021082001
|
[20] |
WANG L, PENG Y W, XU Y L, et al. An in situ depolymerization and liquid chromatography-tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples[J]. Environmental Science & Technology, 2022, 56(18): 13029-13035.
|
[21] |
WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
|
[22] |
屠依娜, 石凤丽, 李英杰, 等. 水中不同热解温度溶解性黑碳的光化学活性[J]. 环境化学, 2022, 41(6): 2094-2102. doi: 10.7524/j.issn.0254-6108.2021012804
TU Y N, SHI F L, LI Y J, et al. Photochemical activity of dissolved black carbon from different pyrolysis temperature in aqueous solution[J]. Environmental Chemistry, 2022, 41(6): 2094-2102 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021012804
|
[23] |
MORAN M A, SHELDON W M Jr, ZEPP R G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J]. Limnology and Oceanography, 2000, 45(6): 1254-1264. doi: 10.4319/lo.2000.45.6.1254
|
[24] |
MOUNIER S, BRAUCHER R, BENAı̈M J Y. Differentiation of organic matter’s properties of the Rio Negro Basin by cross-flow ultra-filtration and UV-spectrofluorescence[J]. Water Research, 1999, 33(10): 2363-2373. doi: 10.1016/S0043-1354(98)00456-4
|
[25] |
DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: Method of measurement and near-surface distribution[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(4): 659-675. doi: 10.1016/0967-0637(94)90048-5
|
[26] |
XU Q, LI G, FANG L, et al. Enhanced formation of 6PPD-Q during the aging of tire wear particles in anaerobic flooded soils: The role of iron reduction and environmentally persistent free radicals[J]. Environmental Science & Technology, 2023, 57(14): 5978-5987.
|
[27] |
XIAO L H, ZHENG Z Y, IRGUM K, et al. Studies of emission processes of polymer additives into water using quartz crystal microbalance-a case study on organophosphate esters[J]. Environmental Science & Technology, 2020, 54(8): 4876-4885.
|
[28] |
SHI Y Q, LIU P, WU X W, et al. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics[J]. Water Research, 2021, 195: 116980. doi: 10.1016/j.watres.2021.116980
|
[29] |
LEE Y K, MURPHY K R, HUR J. Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives[J]. Environmental Science & Technology, 2020, 54(19): 11905-11914.
|
[30] |
DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634
|
[31] |
MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. doi: 10.1016/j.jhazmat.2020.122515
|
[32] |
DING L, LUO Y Y, YU X Q, et al. Insight into interactions of polystyrene microplastics with different types and compositions of dissolved organic matter[J]. Science of the Total Environment, 2022, 824: 153883. doi: 10.1016/j.scitotenv.2022.153883
|
[33] |
范秀磊, 常卓恒, 邹晔锋, 等. 可降解微塑料对铜和锌离子的吸附解吸特性[J]. 中国环境科学, 2021, 41(5): 2141-2150.
FAN X L, CHANG Z H, ZOU Y F, et al. Adsorption and desorption properties of degradable microplastic for Cu2+ and Zn2+[J]. China Environmental Science, 2021, 41(5): 2141-2150 (in Chinese).
|
[34] |
王林, 王姝歆, 曾祥英, 等. 老化作用对微塑料吸附四环素的影响及其机制[J]. 环境科学, 2022, 43(10): 4511-4521.
WANG L, WANG S X, ZENG X Y, et al. Effect of aging on adsorption of tetracycline by microplastics and the mechanisms[J]. Environmental Science, 2022, 43(10): 4511-4521 (in Chinese).
|
[35] |
刘少通, 程文华, 彭文山, 等. 聚乙烯和聚苯乙烯塑料在青岛海洋大气环境中的自然老化行为研究[J]. 合成材料老化与应用, 2019, 48(2): 24-29,37.
LIU S T, CHENG W H, PENG W S, et al. Natural weathering of typical plastics(PE, PS) under Qingdao marine atmospheric environment[J]. Synthetic Materials Aging and Application, 2019, 48(2): 24-29,37 (in Chinese).
|
[36] |
WANG N, YU J G, CHANG P R, et al. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends[J]. Carbohydrate Polymers, 2008, 71(1): 109-118. doi: 10.1016/j.carbpol.2007.05.025
|
[37] |
QIU X R, MA S R, ZHANG J X, et al. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: The crucial role of reactive oxygen species[J]. Environmental Science & Technology, 2022, 56(14): 10149-10160.
|
[38] |
LUO L, CHEN Z E, LV J T, et al. Molecular understanding of dissolved black carbon sorption in soil-water environment[J]. Water Research, 2019, 154: 210-216. doi: 10.1016/j.watres.2019.01.060
|
[39] |
毕晨曦. 聚乳酸塑料在高温下水解降解的研究[D]. 大连: 大连理工大学, 2020.
BI C X. Study on hydrolytic degradation of polylactic acid plastic at high temperature[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
|
[40] |
WU S W, QIU M, GUO B C, et al. Nanodot-loaded clay nanotubes as green and sustained radical scavengers for elastomer[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1775-1783.
|