[1] CHEN H R, WANG J J, ZHAO X T, et al. Occurrence of dissolved black carbon in source water and disinfection byproducts formation during chlorination[J]. Journal of Hazardous Materials, 2022, 435: 129054. doi: 10.1016/j.jhazmat.2022.129054
[2] WANG L, LI J, ZHAO J, et al. Photodegradation of clindamycin by the dissolved black carbon is simultaneously regulated by ROS generation and the binding effect[J]. Water Research, 2023, 233: 119784. doi: 10.1016/j.watres.2023.119784
[3] 张宵, 刘一帆, 刘强, 等. 溶解性黑碳促进水环境中四环素的光降解[J]. 环境化学, 2023, 42(6): 2064-2075. doi: 10.7524/j.issn.0254-6108.2021122001 ZHANG X, LIU Y F, LIU Q, et al. Dissolved black carbon enhanced the photodegradation of tetracycline in aqueous solution[J]. Environmental Chemistry, 2023, 42(6): 2064-2075 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021122001
[4] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution[J]. Environmental Science & Technology, 2018, 52(18): 10391-10399.
[5] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
[6] ZHANG P, SHAO Y F, XU X J, et al. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light[J]. Science of the Total Environment, 2020, 724: 137913. doi: 10.1016/j.scitotenv.2020.137913
[7] LIU H T, GE Q, XU F C, et al. Dissolved black carbon induces fast photo-reduction of silver ions under simulated sunlight[J]. Science of the Total Environment, 2021, 775: 145897. doi: 10.1016/j.scitotenv.2021.145897
[8] XU Y H, OU Q, LIU C H, et al. Aggregation and deposition behaviors of dissolved black carbon with coexisting heavy metals in aquatic solution[J]. Environmental Science:Nano, 2020, 7(9): 2773-2784. doi: 10.1039/D0EN00373E
[9] HE H, LIU K Q, GUO Z W, et al. Photoaging mechanisms of microplastics mediated by dissolved organic matter in an iron-rich aquatic environment[J]. Science of the Total Environment, 2023, 860: 160488. doi: 10.1016/j.scitotenv.2022.160488
[10] 陈苏, 刘颖, 张晓莹, 等. 微塑料老化行为及其对重金属吸附影响的研究进展[J]. 生态与农村环境学报, 2023, 39(1): 12-19. CHEN S, LIU Y, ZHANG X Y, et al. Progress in the study on ageing behavior of microplastics and its effect on heavy metal adsorption[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 12-19 (in Chinese).
[11] XIAO Y H, WANG Q J, LI P H, et al. Impact of light-aged microplastic on microalgal production of dissolved organic matter[J]. Science of the Total Environment, 2023, 889: 164312. doi: 10.1016/j.scitotenv.2023.164312
[12] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113
[13] ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658
[14] CHEN M L, LIU S S, BI M H, et al. Aging behavior of microplastics affected DOM in riparian sediments: From the characteristics to bioavailability[J]. Journal of Hazardous Materials, 2022, 431: 128522. doi: 10.1016/j.jhazmat.2022.128522
[15] HUNG C M, CHEN C W, HUANG C P, et al. Ecological responses of coral reef to polyethylene microplastics in community structure and extracellular polymeric substances[J]. Environmental Pollution, 2022, 307: 119522. doi: 10.1016/j.envpol.2022.119522
[16] SUN Y Z, JI J H, TAO J G, et al. Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems[J]. TrAC Trends in Analytical Chemistry, 2023, 158: 116882. doi: 10.1016/j.trac.2022.116882
[17] SONG F H, LI T T, WU F C, et al. Temperature-dependent molecular evolution of biochar-derived dissolved black carbon and its interaction mechanism with polyvinyl chloride microplastics[J]. Environmental Science & Technology, 2023, 57(18): 7285-7297.
[18] 高洁, 江韬, 闫金龙, 等. 天然日光辐照下两江交汇处溶解性有机质(DOM)光漂白过程: 以涪江-嘉陵江为例[J]. 环境科学, 2014, 35(9): 3397-3407. GAO J, JIANG T, YAN J L, et al. Photobleaching of dissolved organic matter(DOM) from confluence of two rivers under natural solar radiation: A case study of Fujiang River-Jialingjiang River[J]. Environmental Science, 2014, 35(9): 3397-3407 (in Chinese).
[19] 左林子, 侯婉儿, 王飞, 等. 微塑料的光老化过程及其携带内源污染物释放的研究进展[J]. 环境化学, 2022, 41(7): 2245-2255. doi: 10.7524/j.issn.0254-6108.2021082001 ZUO L Z, HOU W E, WANG F, et al. Research progress on photo-aging of microplastics and their effects on the release of endogenous pollutants[J]. Environmental Chemistry, 2022, 41(7): 2245-2255 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021082001
[20] WANG L, PENG Y W, XU Y L, et al. An in situ depolymerization and liquid chromatography-tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples[J]. Environmental Science & Technology, 2022, 56(18): 13029-13035.
[21] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[22] 屠依娜, 石凤丽, 李英杰, 等. 水中不同热解温度溶解性黑碳的光化学活性[J]. 环境化学, 2022, 41(6): 2094-2102. doi: 10.7524/j.issn.0254-6108.2021012804 TU Y N, SHI F L, LI Y J, et al. Photochemical activity of dissolved black carbon from different pyrolysis temperature in aqueous solution[J]. Environmental Chemistry, 2022, 41(6): 2094-2102 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021012804
[23] MORAN M A, SHELDON W M Jr, ZEPP R G. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter[J]. Limnology and Oceanography, 2000, 45(6): 1254-1264. doi: 10.4319/lo.2000.45.6.1254
[24] MOUNIER S, BRAUCHER R, BENAı̈M J Y. Differentiation of organic matter’s properties of the Rio Negro Basin by cross-flow ultra-filtration and UV-spectrofluorescence[J]. Water Research, 1999, 33(10): 2363-2373. doi: 10.1016/S0043-1354(98)00456-4
[25] DETERMANN S, REUTER R, WAGNER P, et al. Fluorescent matter in the eastern Atlantic Ocean. Part 1: Method of measurement and near-surface distribution[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(4): 659-675. doi: 10.1016/0967-0637(94)90048-5
[26] XU Q, LI G, FANG L, et al. Enhanced formation of 6PPD-Q during the aging of tire wear particles in anaerobic flooded soils: The role of iron reduction and environmentally persistent free radicals[J]. Environmental Science & Technology, 2023, 57(14): 5978-5987.
[27] XIAO L H, ZHENG Z Y, IRGUM K, et al. Studies of emission processes of polymer additives into water using quartz crystal microbalance-a case study on organophosphate esters[J]. Environmental Science & Technology, 2020, 54(8): 4876-4885.
[28] SHI Y Q, LIU P, WU X W, et al. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics[J]. Water Research, 2021, 195: 116980. doi: 10.1016/j.watres.2021.116980
[29] LEE Y K, MURPHY K R, HUR J. Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives[J]. Environmental Science & Technology, 2020, 54(19): 11905-11914.
[30] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634
[31] MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals[J]. Journal of Hazardous Materials, 2020, 393: 122515. doi: 10.1016/j.jhazmat.2020.122515
[32] DING L, LUO Y Y, YU X Q, et al. Insight into interactions of polystyrene microplastics with different types and compositions of dissolved organic matter[J]. Science of the Total Environment, 2022, 824: 153883. doi: 10.1016/j.scitotenv.2022.153883
[33] 范秀磊, 常卓恒, 邹晔锋, 等. 可降解微塑料对铜和锌离子的吸附解吸特性[J]. 中国环境科学, 2021, 41(5): 2141-2150. FAN X L, CHANG Z H, ZOU Y F, et al. Adsorption and desorption properties of degradable microplastic for Cu2+ and Zn2+[J]. China Environmental Science, 2021, 41(5): 2141-2150 (in Chinese).
[34] 王林, 王姝歆, 曾祥英, 等. 老化作用对微塑料吸附四环素的影响及其机制[J]. 环境科学, 2022, 43(10): 4511-4521. WANG L, WANG S X, ZENG X Y, et al. Effect of aging on adsorption of tetracycline by microplastics and the mechanisms[J]. Environmental Science, 2022, 43(10): 4511-4521 (in Chinese).
[35] 刘少通, 程文华, 彭文山, 等. 聚乙烯和聚苯乙烯塑料在青岛海洋大气环境中的自然老化行为研究[J]. 合成材料老化与应用, 2019, 48(2): 24-29,37. LIU S T, CHENG W H, PENG W S, et al. Natural weathering of typical plastics(PE, PS) under Qingdao marine atmospheric environment[J]. Synthetic Materials Aging and Application, 2019, 48(2): 24-29,37 (in Chinese).
[36] WANG N, YU J G, CHANG P R, et al. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends[J]. Carbohydrate Polymers, 2008, 71(1): 109-118. doi: 10.1016/j.carbpol.2007.05.025
[37] QIU X R, MA S R, ZHANG J X, et al. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: The crucial role of reactive oxygen species[J]. Environmental Science & Technology, 2022, 56(14): 10149-10160.
[38] LUO L, CHEN Z E, LV J T, et al. Molecular understanding of dissolved black carbon sorption in soil-water environment[J]. Water Research, 2019, 154: 210-216. doi: 10.1016/j.watres.2019.01.060
[39] 毕晨曦. 聚乳酸塑料在高温下水解降解的研究[D]. 大连: 大连理工大学, 2020. BI C X. Study on hydrolytic degradation of polylactic acid plastic at high temperature[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
[40] WU S W, QIU M, GUO B C, et al. Nanodot-loaded clay nanotubes as green and sustained radical scavengers for elastomer[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1775-1783.