[1] |
全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11.
National Soil Pollution Survey Bulletin[J]. China Environmental Protection Industry, 2014(5): 10-11 (in Chinese).
|
[2] |
ZHANG M H, JOUQUET P, DAI J, et al. Assessment of bioremediation potential of metal contaminated soils (Cu, Cd, Pb and Zn) by earthworms from their tolerance, accumulation and impact on metal activation and soil quality: A case study in South China[J]. Science of the Total Environment, 2022, 820: 152834.
|
[3] |
HOU S N, ZHENG N, TANG L, et al. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018[J]. Environment International, 2019, 128: 430-437.
|
[4] |
CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014.
|
[5] |
ARAÚJO E, STRAWN D G, MORRA M, et al. Association between extracted copper and dissolved organic matter in dairy-manure amended soils[J]. Environmental Pollution, 2019, 246: 1020-1026.
|
[6] |
URIU-ADAMS J Y, KEEN C L. Copper, oxidative stress, and human health[J]. Molecular Aspects of Medicine, 2005, 26(4/5): 268-298.
|
[7] |
LEE J S, CHON H T, KIM K W. Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site[J]. Environmental Geochemistry and Health, 2005, 27(2): 185-191.
|
[8] |
STRAIN S. Copper in the food chain and human health (foodcue) [J]. Italian Journal of Food Science. 1999, 11: 81.
|
[9] |
BOST M, HOUDART S, OBERLI M, et al. Dietary copper and human health: Current evidence and unresolved issues[J]. Journal of Trace Elements in Medicine and Biology, 2016, 35: 107-115.
|
[10] |
SHUMAN L M, HARGROVE W L. Effect of tillage on the distribution of manganese, copper, iron, and zinc in soil fractions[J]. Soil Science Society of America Journal, 1985, 49(5): 1117-1121.
|
[11] |
SHAHID M, PINELLI E, DUMAT C. Review of Pb availability and toxicity to plants in relation with metal speciation;role of synthetic and natural organic ligands[J]. Journal of Hazardous Materials, 2012, 219/220: 1-12.
|
[12] |
李佳璐, 姜霞, 王书航, 等. 丹江口水库沉积物重金属形态分布特征及其迁移能力[J]. 中国环境科学, 2016, 36(4): 1207-1217. doi: 10.3969/j.issn.1000-6923.2016.04.037
LI J L, JIANG X, WANG S H, et al. Heavy metal in sediment of Danjiangkou Reservoir: Chemical speciation and mobility[J]. China Environmental Science, 2016, 36(4): 1207-1217 (in Chinese). doi: 10.3969/j.issn.1000-6923.2016.04.037
|
[13] |
刘洁, 孙可, 韩兰芳. 生物炭对土壤重金属形态及生物有效性影响的研究进展[J]. 环境化学, 2021, 40(6): 1643-1658. doi: 10.7524/j.issn.0254-6108.2021011402
LIU J, SUN K, HAN L F. Effect of biochar on soil heavy metal speciation and bioavailability: A review[J]. Environmental Chemistry, 2021, 40(6): 1643-1658 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011402
|
[14] |
孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤-茶树体系中重金属的生物有效性[J]. 环境化学, 2020, 39(10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403
SUN J W, HU G R, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, 39(10): 2765-2776 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020022403
|
[15] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
|
[16] |
SPOSITO G, LUND L J, CHANG A C. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. fractionation of Ni, Cu, Zn, Cd, and Pb in solid phase[J]. Soil Science Society of America Journal, 1982, 46(2): 260-264.
|
[17] |
房煦, 罗军, 高悦, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅱ: 土壤与沉积物原位高分辨分析中的方法与应用[J]. 农业环境科学学报, 2017, 36(9): 1693-1702. doi: 10.11654/jaes.2017-0454
FANG X, LUO J, GAO Y, et al. Theory and application of diffusive gradients in thin-films in the environment: High-resolution analysis and its applications in soils and sediments[J]. Journal of Agro-Environment Science, 2017, 36(9): 1693-1702 (in Chinese). doi: 10.11654/jaes.2017-0454
|
[18] |
GIMPEL J, ZHANG H, DAVISON W, et al. in situ trace metal speciation in lake surface waters using DGT, dialysis, and filtration[J]. Environmental Science & Technology, 2003, 37(1): 138-146.
|
[19] |
PHILIPPS R R, XU X Y, BRINGOLF R B, et al. Evaluation of the DGT technique for predicting uptake of metal mixtures by fathead minnow (Pimephales promelas) and yellow lampmussel (Lampsilis cariosa)[J]. Environmental Toxicology and Chemistry, 2019, 38(1): 61-70.
|
[20] |
WANG Z, ER Q, ZHANG C C, et al. A new DGT technique based on nano-sized Mg2Al layered double hydroxides with DTPA for sampling of eight anionic and cationic metals[J]. Environmental Science and Pollution Research, 2023, 30(13): 37679-37690.
|
[21] |
BAI X L, YE W N, ZHOU Y K, et al. Comparison between diffusive gradients in thin film technology (DGT) and traditional methods for prediction of plant available heavy metals in agricultural soil[J]. Journal of Soils and Sediments, 2023, 23(3): 1501-1510.
|
[22] |
BURT R, WILSON M A, MAYS M D, et al. Major and trace elements of selected pedons in the USA[J]. Journal of Environmental Quality, 2003, 32(6): 2109-2121.
|
[23] |
CHAKRABORTY S, WEINDORF D C, LI B, et al. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils[J]. Science of the Total Environment, 2015, 514: 399-408.
|
[24] |
de LIMA T M, WEINDORF D C, CURI N, et al. Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment[J]. Geoderma, 2019, 353: 264-272.
|
[25] |
QU M K, LIU H B, GUANG X, et al. Improving correction quality for in-situ portable X-ray fluorescence (PXRF) using robust geographically weighted regression with categorical land-use types at a regional scale[J]. Geoderma, 2022, 409: 115615.
|
[26] |
QU M K, CHEN J, LI W D, et al. Correction of in situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction[J]. Environmental Pollution, 2019, 254(Pt A): 112993.
|
[27] |
WEINDORF D C, BAKR N, ZHU Y D. Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications[M]//Advances in Agronomy. Amsterdam: Elsevier, 2014, 128: 1-45.
|
[28] |
SANTANA M L T, RIBEIRO B T, SILVA S H G, et al. Conditions affecting oxide quantification in unknown tropical soils via handheld X-ray fluorescence spectrometer[J]. Soil Research, 2018, 56(6): 648-655.
|
[29] |
CHEN Z, WILLIAMS P N, ZHANG H. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF[J]. Environmental Science:Processes & Impacts, 2013, 15(9): 1768-1774.
|
[30] |
REN M Y, DING S M, SHI D, et al. A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen[J]. Science of the Total Environment, 2020, 725: 138447.
|
[31] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese).
|
[32] |
DING S M, XU D, SUN Q, et al. Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase[J]. Environmental Science & Technology, 2010, 44(21): 8169-8174.
|
[33] |
ZHANG H, DAVISON W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution[J]. Analytical Chemistry, 1995, 67(19): 3391-3400.
|
[34] |
孙彤, 纪艺凝, 李可, 等. 弱碱性玉米地土壤重金属赋存形态及生态风险评价[J]. 环境化学, 2020, 39(9): 2469-2478. doi: 10.7524/j.issn.0254-6108.2019061701
SUN T, JI Y N, LI K, et al. The speciation distributions of heavy metals in weakly alkaline maize soils and its potential ecological risk[J]. Environmental Chemistry, 2020, 39(9): 2469-2478 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019061701
|
[35] |
MARGUÍ E, QUERALT I, de ALMEIDA E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends[J]. Chemosphere, 2022, 303: 135006.
|
[36] |
MARGUÍ E, QUERALT I, GUERRA M, et al. Mercury determination at trace levels using membrane preconcentration and benchtop total reflection X-ray fluorescence analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 149: 84-90.
|
[37] |
U. S. EPA. XRF technologies for measuring trace elements in soil and sediment. NitonXLt 700 Series pXRF Analyzer, Innovative technology verification report EPA/540/R-06/004 (2006). US EPA. 2006.
|
[38] |
中华人民共和国农业部. 农田土壤环境质量监测技术规范: NY/T 395—2000[S]. 北京: 中国标准出版社, 2000.
Ministry of Agriculture of the People’s Republic of China. Procedural regulations regarding the environment quality monitoring of soil: NY/T 395—2000[S]. Beijing: Standards Press of China, 2000 (in Chinese).
|