[1] ZHOU Z, MUEHE E M, TOMASZEWSKI E J, et al. Effect of natural organic matter on the fate of cadmium during microbial ferrihydrite reduction[J]. Environmental Science & Technology, 2020, 54(15): 9445-9453.
[2] FERNANDO MAHLER C, dal SANTO SVIERZOSKI N, AUGUSTO ROLIM BERNARDINO C. Chemical characteristics of humic substances in nature[M]// ABDELHADI M, editor. Humic Substance. IntechOpen, 2021
[3] MAYHEW L, SINGH A P, LI P, et al. Differentiation between humic and non-humic substances using alkaline extraction and ultraviolet spectroscopy[J]. Journal of AOAC International, 2023, 106(3): 748-759. doi: 10.1093/jaoacint/qsad001
[4] BAI Y G, MELLAGE A, CIRPKA O A, et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales[J]. Environmental Science & Technology, 2020, 54(7): 4131-4139.
[5] YANG P J, JIANG T, CONG Z Y, et al. Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: The role of quinone and nonquinone moieties[J]. Environmental Science & Technology, 2022, 56(10): 6744-6753.
[6] KELLER J K, WEISENHORN P B, MEGONIGAL J P. Humic acids as electron acceptors in wetland decomposition[J]. Soil Biology and Biochemistry, 2009, 41(7): 1518-1522. doi: 10.1016/j.soilbio.2009.04.008
[7] KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment[J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92. doi: 10.1016/S0168-6496(03)00245-9
[8] ZHUANG X Z, SONG Y P, ZHAN H, et al. Pyrolytic conversion of biowaste-derived hydrochar: Decomposition mechanism of specific components[J]. Fuel, 2020, 266: 117106. doi: 10.1016/j.fuel.2020.117106
[9] KWIECIŃSKA B K, PUSZ S. Pyrolytic carbon—Definition, classification and occurrence[J]. International Journal of Coal Geology, 2016, 163: 1-7. doi: 10.1016/j.coal.2016.06.014
[10] GHANI W, MOHD A, Da SILVA G, et al. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization[J]. Industrial Crops and Products, 2013, 44: 18-24. doi: 10.1016/j.indcrop.2012.10.017
[11] JIEN S H, WANG C S. Effects of biochar on soil properties and erosion potential in a highly weathered soil[J]. CATENA, 2013, 110: 225-233. doi: 10.1016/j.catena.2013.06.021
[12] ZHANG Y P, ADI V S K, HUANG H L, et al. Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 240-244. doi: 10.1016/j.jiec.2019.03.046
[13] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[14] ZHANG Y, XU X Y, ZHANG P Y, et al. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar[J]. Chemosphere, 2019, 232: 273-280. doi: 10.1016/j.chemosphere.2019.05.225
[15] LIU X Y, YANG L, ZHAO H T, et al. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: Simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils[J]. Science of the Total Environment, 2020, 708: 134479. doi: 10.1016/j.scitotenv.2019.134479
[16] ZHAO N N, LIU Y H, ZHANG Y F, et al. Pyrogenic carbon facilitated microbial extracellular electron transfer in electrogenic granular sludge via geobattery mechanism[J]. Water Research, 2022, 220: 118618. doi: 10.1016/j.watres.2022.118618
[17] ZHOU L, CHI T Y, ZHOU Y Y, et al. Stimulation of pyrolytic carbon materials as electron shuttles on the anaerobic transformation of recalcitrant organic pollutants: A review[J]. The Science of the Total Environment, 2021, 801: 149696. doi: 10.1016/j.scitotenv.2021.149696
[18] XIANG Y J, XU Z Y, WEI Y Y, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138.
[19] DAI Y J, ZHANG N X, XING C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review[J]. Chemosphere, 2019, 223: 12-27. doi: 10.1016/j.chemosphere.2019.01.161
[20] MUZYKA R, MISZTAL E, HRABAK J, et al. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar[J]. Energy, 2023, 263: 126128. doi: 10.1016/j.energy.2022.126128
[21] LI L D, LONG A, FOSSUM B, et al. Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta-analysis[J]. Soil Use and Management, 2023, 39(1): 43-52. doi: 10.1111/sum.12848
[22] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8: 14873. doi: 10.1038/ncomms14873
[23] GABHI R S, KIRK D W, JIA C Q. Preliminary investigation of electrical conductivity of monolithic biochar[J]. Carbon, 2017, 116: 435-442. doi: 10.1016/j.carbon.2017.01.069
[24] GABHI R, BASILE L, KIRK D W, et al. Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature[J]. Biochar, 2020, 2(3): 369-378. doi: 10.1007/s42773-020-00056-0
[25] LI X M, SHEN Q R, ZHANG D Q, et al. Functional groups determine biochar properties (pH and EC) as studied by two-dimensional (13)C NMR correlation spectroscopy[J]. PLoS One, 2013, 8(6): e65949. doi: 10.1371/journal.pone.0065949
[26] JANU R, MRLIK V, RIBITSCH D, et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature[J]. Carbon Resources Conversion, 2021, 4: 36-46. doi: 10.1016/j.crcon.2021.01.003
[27] ZHANG M, GAO B, YAO Y, et al. Synthesis, characterization, and environmental implications of graphene-coated biochar[J]. Science of the Total Environment, 2012, 435/436: 567-572. doi: 10.1016/j.scitotenv.2012.07.038
[28] XU X J, QIN J G, LI Z. Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials[J]. Polymer Bulletin, 2012, 69(8): 899-910. doi: 10.1007/s00289-012-0803-1
[29] HE P J, LIU Y H, SHAO L M, et al. Particle size dependence of the physicochemical properties of biochar[J]. Chemosphere, 2018, 212: 385-392. doi: 10.1016/j.chemosphere.2018.08.106
[30] FAN Q Y, SUN J X, CHU L, et al. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar[J]. Chemosphere, 2018, 207: 33-40. doi: 10.1016/j.chemosphere.2018.05.044
[31] BAI Y G, SUN T R, ANGENENT L T, et al. Electron hopping enables rapid electron transfer between quinone-/ hydroquinone-containing organic molecules in microbial iron(III) mineral reduction[J]. Environmental Science & Technology, 2020, 54(17): 10646-10653.
[32] ELGRISHI N, ROUNTREE K J, McCARTHY B D, et al. A practical beginner’s guide to cyclic voltammetry[J]. Journal of Chemical Education, 2018, 95(2): 197-206. doi: 10.1021/acs.jchemed.7b00361